SummaryUnder elevated CO2, interactions between tomato and pathogens with different infection strategies were compared. This work highlights modulated SA/JA cross talk contributes to variation in disease susceptibility under elevated CO2.
Jasmonic acid (JA) and nitric oxide (NO) are well-characterized signaling molecules in plant defense responses. However, their roles in plant defense against root-knot nematode (RKN, Meloidogyne incognita) infection are largely unknown. In this study, we found that the transcript levels of the JA- and NO-related biosynthetic and signaling component genes were induced after RKN infection. Application of exogenous JA and sodium nitroprusside (SNP; a NO donor) significantly decreased the number of egg masses in tomato roots after RKN infection and partially alleviated RKN-induced decreases in plant fresh weight and net photosynthetic rate. These molecules also alleviated RKN-induced increases in root electrolyte leakage and membrane peroxidation. Importantly, NO scavenger partially inhibited JA-induced RKN defense. The pharmacological inhibition of JA biosynthesis significantly increased the plants’ susceptibility to RKNs, which was effectively alleviated by SNP application, showing that NO may be involved in the JA-dependent RKN defense pathway. Furthermore, both JA and SNP induced increases in protease inhibitor 2 (PI2) gene expression after RKN infestation. Silencing of PI2 compromised both JA- and SNP-induced RKN defense responses, suggesting that the PI2 gene mediates JA- and NO-induced defense against RKNs. This work will be important for deepening the understanding of the mechanisms involved in basal defense against RKN attack in plants.
The induction of C-repeat binding factors (CBFs) is crucial for plant survival at low temperatures. Therefore, understanding the mechanisms that regulate CBF transcription is vital for the future development of crops with increased cold tolerance. Here, we provide evidence for the existence of a LONG HYPOCOTYL 5 (HY5)-MYB15-CBFs transcriptional cascade that plays a crucial role in the cold response in tomato. The exposure of tomato plants to cold (4 C) increased the levels of HY5, MYB15 and CBFs transcripts. Moreover, mutations in HY5 or MYB15 decreased the levels of CBF transcripts. In contrast, overexpression of HY5 or MYB15 increased CBF transcript abundance. Crucially, the HY5 transcription factor activated the expression of MYB15 by directly binding to the promoter region, while both HY5 and MYB15 activated the expression of CBF1, CBF2 and CBF3. Taken together, these data show that HY5 can directly regulate CBF transcript levels, and also influence CBF expression indirectly via MYB15. The coordinated action of HY5 and MYB15 allows precise regulation of CBF expression and subsequent cold tolerance. These findings provide an improved understanding of the molecular mechanisms affording transcriptional regulation of CBFs, which can be exploited in the future to enhance cold tolerance in crops.
With the rapidly changing global climate, the agricultural systems are confronted with more unpredictable and harsh environmental conditions than before which lead to compromised food production. Thus, to ensure safer and sustainable crop production, the use of advanced nanotechnological approaches in plants (phytonanotechnology) is of great significance. In this review, we summarize recent advances in phytonanotechnology in agricultural systems that can assist to meet ever-growing demands of food sustainability. The application of phytonanotechnology can change traditional agricultural systems, allowing the target-specific delivery of biomolecules (such as nucleotides and proteins) and cater the organized release of agrochemicals (such as pesticides and fertilizers). An amended comprehension of the communications between crops and nanoparticles (NPs) can improve the production of crops by enhancing tolerance towards environmental stresses and optimizing the utilization of nutrients. Besides, approaches like nanoliposomes, nanoemulsions, edible coatings, and other kinds of NPs offer numerous selections in the postharvest preservation of crops for minimizing food spoilage and thus establishing phtonanotechnology as a sustainable tool to architect modern agricultural practices.
Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.