This paper develops a control and estimation design for the one-phase Stefan problem. The Stefan problem represents a liquid-solid phase transition as time evolution of a temperature profile in a liquid-solid material and its moving interface. This physical process is mathematically formulated as a diffusion partial differential equation (PDE) evolving on a time-varying spatial domain described by an ordinary differential equation (ODE). The state-dependency of the moving interface makes the coupled PDE-ODE system a nonlinear and challenging problem. We propose a full-state feedback control law, an observer design, and the associated output-feedback control law via the backstepping method. The designed observer allows estimation of the temperature profile based on the available measurement of solid phase length. The associated output-feedback controller ensures the global exponential stability of the estimation errors, the H1norm of the distributed temperature, and the moving interface to the desired setpoint under some explicitly given restrictions on the setpoint and observer gain. The exponential stability results are established considering Neumann and Dirichlet boundary actuations.
Lifting up a cage with miners via a mining cable causes axial vibrations of the cable. These vibration dynamics can be described by a coupled wave partial differential equation-ordinary differential equation (PDE-ODE) system with a Neumann interconnection on a time-varying spatial domain. Such a system is actuated not at the moving cage boundary, but at a separate fixed boundary where a hydraulic actuator acts on a floating sheave. In this paper, an observer-based output-feedback control law for the suppression of the axial vibration in the varying-length mining cable is designed by the backstepping method. The control law is obtained through the estimated distributed vibration displacements constructed via available boundary measurements. The exponential stability of the closed-loop system with the output-feedback control law is shown by Lyapunov analysis. The performance of the proposed controller is investigated via numerical simulation, which illustrates the effective vibration suppression with the fast convergence of the observer error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.