Microbial communities play a vital role in biogeochemical cycles, allowing the biodegradation of a wide range of pollutants. The composition of the community and the interactions between its members affect degradation rate and determine the identity of the final products. Here, we demonstrate the application of sequencing technologies and metabolic modeling approaches towards enhancing biodegradation of atrazine-a herbicide causing environmental pollution. Treatment of agriculture soil with atrazine is shown to induce significant changes in community structure and functional performances. Genome-scale metabolic models were constructed for Arthrobacter, the atrazine degrader, and four other non-atrazine degrading species whose relative abundance in soil was changed following exposure to the herbicide. By modeling community function we show that consortia including the direct degrader and non-degrader differentially abundant species perform better than Arthrobacter alone. Simulations predict that growth/degradation enhancement is derived by metabolic exchanges between community members. Based on simulations we designed endogenous consortia optimized for enhanced degradation whose performances were validated in vitro and biostimulation strategies that were tested in pot experiments. Overall, our analysis demonstrates that understanding community function in its wider context, beyond the single direct degrader perspective, promotes the design of biostimulation strategies.These authors contributed equally:
Soil provides a critical environment for microbial community development. However, microorganisms may be sensitive to substances such as heavy metals (HMs), which are common soil contaminants. This study investigated bacterial communities using 16S ribosomal RNA (rRNA) gene fragment sequencing in geographic regions with and without HM pollution to elucidate the effects of soil properties and HMs on bacterial communities. No obvious changes in the richness or diversity of bacterial communities were observed between samples from mining and control areas. Significant differences in bacterial richness and diversity were detected between samples from different geographic regions, indicating that the basic soil characteristics were the most important factors affecting bacterial communities other than HMs. However, the abundances of several phyla and genera differed significantly between mining and control samples, suggesting that Zn and Pb pollution may impact the soil bacterial community composition. Moreover, regression analyses showed that the relative abundances of these phyla and genera were correlated significantly with the soil-available Zn and Pb contents. Redundancy analysis indicated that the soil K, ammoniacal nitrogen (NH-N), total Cu, and available Zn and Cu contents were the most important factors. Our results not only suggested that the soil bacteria were sensitive to HM stresses but also indicated that other soil properties may affect soil microorganisms to a greater extent.
Acetamiprid, a chloronicotinyl neonicotinoid insecticide, is among the most commonly used insecticides worldwide, and its environmental fate has caused considerable concern. The compound 1-(6-chloropyridin-3-yl)-N-methylmethanamine (IM 1-4) has been reported to be the main intermediate during acetamiprid catabolism in microorganisms, honeybees, and spinach. However, the molecular mechanism underlying the hydrolysis of acetamiprid to IM 1-4 has not yet been elucidated. In this study, a novel amidase (AceAB) that initially hydrolyzes the C-N bond of acetamiprid to generate IM 1-4 was purified and characterized from the acetamiprid-degrading strain Pigmentiphaga sp. strain D-2. Based on peptide profiling of the purified AceAB and the draft genome sequence of strain D-2, aceA (372 bp) and aceB (2,295 bp), encoding the α and β subunits of AceAB, respectively, were cloned and found to be necessary for acetamiprid hydrolysis in strain D-2. The characteristics of AceAB were also systematically investigated. Though AceA and AceB showed 35% to 56% identity to the α and β subunits of the N,N-dimethylformamidase from Paracoccus aminophilus, AceAB was specific for the hydrolysis of acetamiprid and showed no activities to N,N-dimethylformamide or its structural analogs. IMPORTANCE Acetamiprid, among the top neonicotinoid insecticides used worldwide, is one of the most important commercial insecticides. Due to its extensive use, the environmental fate of acetamiprid, especially its microbial degradation, has caused considerable concern. Although the catabolic pathways of acetamiprid in microorganisms have been extensively studied, the molecular mechanisms underlying acetamiprid biodegradation (except for a nitrile hydratase) remain largely unknown, and the enzyme responsible for the biotransformation of acetamiprid into its main intermediate, IM 1-4, have not yet been elucidated. The amidase AceAB and its encoding genes, aceA and aceB, characterized in this study, were found to be necessary and specific for the initial hydrolysis of the C-N bond of acetamiprid to generate IM 1-4 in Pigmentiphaga sp. strain D-2. The finding of the novel amidase AceAB will greatly enhance our understanding of the microbial catabolism of the widely used insecticide acetamiprid at the molecular level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.