The forecast for photovoltaic (PV) power generation is of great significance for the operation and control of power system. In this paper, a short-term combination forecasting model for PV power based on similar day and cross entropy theory is proposed. The main influencing factors of PV power are analyzed. From the perspective of entropy theory, considering distance entropy and grey relation entropy, a comprehensive index is proposed to select similar days. Then, the least square support vector machine (LSSVM), autoregressive and moving average (ARMA), and back propagation (BP) neural network are used to forecast PV power, respectively. The weights of three single forecasting methods are dynamically set by the cross entropy algorithm and the short-term combination forecasting model for PV power is established. The results show that this method can effectively improve the prediction accuracy of PV power and is of great significance to real-time economical dispatch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.