The thermal cis-to-trans isomerization rate of various azobenzenes was followed by means of spectrophotometric and flash photolysis techniques. For para-donor/para′-acceptor-substituted azobenzenes such as 4-nitro-4′-dimethylaminoazobenzene, the rate was distinctly accelerated, the activation energy decreasing with the increase in the polarity of solvents. Introduction of substituents in para positions with respect to azo group increased the rate irrespective of substituent. The effect is additive and a Hammett-type equation holds. For 4-dimethylamino-and 4-nitroazobenzenes, while the 2-methyl group accelerated the rate, the 2′-methyl group did not. The results suggest that the isomerization proceeds via inversion mechanism and the rate is controlled mainly by the resonance stabilization in the coplanar transition state. The inversion center for asymmetric azobenzenes is discussed.
We study the electronic structure of the ground state of the manganese dimer using the state-averaged complete active space self-consistent field method, followed by second-order quasidegenerate perturbation theory. Overall potential energy curves are calculated for the 1Sigmag+, 11Sigmau+, and 11Piu states, which are candidates for the ground state. Of these states, the 1Sigmag+ state has the lowest energy and we therefore identify it as the ground state. We find values of 3.29 A, 0.14 eV, and 53.46 cm(-1) for the bond length, dissociation energy, and vibrational frequency, in good agreement with the observed values of 3.4 A, 0.1 eV, and 68.1 cm(-1) in rare-gas matrices. These values show that the manganese dimer is a van der Waals molecule with antiferromagnetic coupling.
The potential energy curve of the ground state of Mn(2) has been studied using a systematic sequence of complete active spaces. Deficiencies of the routinely used active space, built from atomic 4s and 3d orbitals, has been identified and discussed. It is shown that an additional sigma(g) orbital, originating from the atomic virtual 4p(z) orbitals, is essential for a proper description of static correlation in the (1)Sigma(g)(+) state of Mn(2). The calculated spectroscopic parameters of the (1)Sigma(g)(+) state agree well with available experimental data. The calculated equilibrium bond lengths are located between 3.24 and 3.50 A, the harmonic vibrational frequencies, between 44 and 72 cm(-1), and the dissociation energies, between 0.05 and 0.09 eV. An urgent need for an accurate gas-phase experimental study of spectroscopic constants of Mn(2) is highlighted.
Abstract:A detailed analysis of a severe intruder state problem in the multistate multireference perturbation theory (MS-MRPT) calculations on the ground state of manganese dimer is presented. An enormous number of detected intruder states (>5000) do not permit finding even an approximate shape of the X 1 + g potential energy curve. The intruder states are explicitly demonstrated to originate from quasidegeneracies in the zeroth-order Hamiltonian spectrum. The electronic configurations responsible for appearance of the quasidegeneracies are identified as single and double excitations from the active orbitals to the external orbitals. It is shown that the quasidegeneracy problem can be completely eliminated using shift techniques despite of its severity. The resultant curves are smooth and continuous. Unfortunately, strong dependence of the spectroscopic parameters of the X 1 + g state on the shift parameter is observed. This finding rises serious controversies regarding validity of employing shift techniques for solving the intruder state problem in MS-MRPT. Various alternative approaches of removing intruder states (e.g., modification of the basis set or changing the active space) are tested. None of these conventional techniques is able to fully avoid the quasidegeneracies. We believe that the MS-MRPT calculations on the three lowest A g states of manganese dimer constitute a perfect benchmark case for studying the behavior of MRPT in extreme situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.