Background: The role of neutrophil extracellular traps (NETs) in procoagulant activity (PCA) in stroke patients caused by thromboembolic occlusion of the internal carotid artery (ICA) remains unclear. Our objectives were to evaluate the critical role of NETs in the induction of hypercoagulability in stroke and to identify the functional significance of NETs during atherothrombosis. Methods: The levels of NETs, activated platelets (PLTs), and PLT-derived microparticles (PMPs) were detected in the plasma of 55 stroke patients and 35 healthy controls. NET formation and thrombi were analysed using immunofluorescence. Exposed phosphatidylserine (PS) was evaluated with flow cytometry and confocal microscopy. PCA was analysed using purified coagulation complex, thrombin, and fibrin formation assays. Findings: The plasma levels of NETs, activated PLTs, and PMP markers in the carotid lesion site (CLS) were significantly higher than those in the aortic blood. NETs were decorated with PS in thrombi and the CLS plasma of ICA occlusion patients. Notably, the complementary roles of CLS plasma and thrombin-activated PLTs were required for NET formation and subsequent PS exposure. PS-bearing NETs provided functional platforms for PMPs and coagulation factor deposition and thus increased thrombin and fibrin formation. DNase I and lactadherin markedly inhibited these effects. In addition, NETs were cytotoxic to endothelial cells, converting these cells to a procoagulant phenotype. Sivelestat, anti-MMP9 antibody, and activated protein C (APC) blocked this cytotoxicity by 25%, 39%, or 52%, respectively. Interpretation: NETs played a pivotal role in the hypercoagulability of stroke patients. Strategies that prevent NET formation may offer a potential therapeutic strategy for thromboembolism interventions.
During the coronavirus disease 2019 (COVID-19) pandemic, some patients with severe COVID-19 exhibited complications such as acute ischemic stroke (AIS), which was closely associated with a poor prognosis. These patients often had an abnormal coagulation, namely, elevated levels of D-dimer and fibrinogen, and a low platelet count. Certain studies have suggested that COVID-19 induces AIS by promoting hypercoagulability. Nevertheless, the exact mechanisms through which COVID-19 leads to a hypercoagulable state in infected patients remain unclear. Understanding the underlying mechanisms of hypercoagulability is of utmost importance for the effective treatment of these patients. The present review aims to summarize the current status of research on COVID-19, hypercoagulability and ischemic stroke. The present review also aimed to shed light into the underlying mechanisms through which COVID-19 induces hypercoagulability, and to provide therapies for different mechanisms for the more effective treatment of patients with COVID-19 with ischemic stroke and prevent AIS during the COVID-19 pandemic.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.