Objectives: The aim of this study is to evaluate the long-term effectiveness and safety of a self-expandable, double-disk biodegradable device made of poly-L-lactic acid (PLLA) for closure of atrial septal defects (ASDs) in swine. Methods: ASDs were created by transseptal needle puncture followed by balloon dilatation in 20 piglets. The experimental group comprised 18 animals, while the remaining 2 animals were used as controls. Effectiveness and safety were evaluated by rectal temperature, leukocyte count, chest radiography, electrocardiogram, transthoracic echocardiography (TTE), intracardiac echocardiography (ICE), and histologic studies. Animals were followed up at 1, 3, 6, and 12 months. Results: An ASD model was successfully created in 19 animals; 1 piglet died during the procedure. The ASD diameters that were created ranged from 5 to 6.4 mm. Devices were successfully implanted in 17 animals. No animal died during the follow-up studies. Rectal temperatures and electrocardiograms were normal at follow-up, while leukocyte counts transiently increased from 1 to 6 months. Radiography, TTE, ICE, and macroscopic studies demonstrated that PLLA occluders were positioned well, with no shifting, mural thrombus formation, or atrioventricular valve insufficiency. Histologic evaluations showed that PLLA devices were partially degraded in the follow-up study. Conclusions: ASD closure with the novel PLLA biodegradable device is safe and effective. Longer-term studies are needed to evaluate long-term biodegradability.
Background:Percutaneous balloon pulmonary valvuloplasty (PBPV) is the preferred therapy for pulmonary valve stenosis (PVS). This study retrospectively reviewed recent PBPV outcomes in infants with PVS. The aim of this study was to evaluate factors associated with immediate therapeutic outcomes and restenosis during medium-term follow-up.Methods:The study included 158 infants with PVS who underwent PBPV from January 2009 to July 2015. Demographic characteristics and patient records were reviewed, including detailed hospitalization parameters, hemodynamic data before and immediately after balloon dilation, cineangiograms, and echocardiograms before PBPV and at each follow-up. All procedures were performed by more than two experienced operators.Results:Immediately after balloon dilation, the pressure gradient across the pulmonary valve decreased from 73.09 ± 21.89 mmHg (range: 43–151 mmHg) to 24.49 ± 17.00 mmHg (range: 3–92 mmHg; P < 0.001) and the right ventricular systolic pressure decreased from 95.34 ± 23.44 mmHg (range: 60–174 mmHg) to 52.07 ± 18.89 mmHg (range: 22–134 mmHg; P < 0.001). Residual transvalvular pressure gradients of 67.31 ± 15.19 mmHg (range: 50–92 mmHg) were found in 8.2% of patients, indicating poor therapeutic effects; 6.4% of patients had variable-staged restenosis at follow-up and 3.8% underwent reintervention by balloon dilation or surgical repairs. Further analysis demonstrated that the balloon/annulus ratio showed statistically significant differences (P < 0.05) among groups with different therapeutic effects and between the restenosis and no-stenosis groups. Binary logistic regression analysis further revealed that higher balloon/annulus ratio (odds ratio: 0.005, 95% confidence interval: 0–0.39) was an independent protective factor for restenosis. The rate of severe complications was 1.9%.Conclusions:PBPV is a definitive therapy for infants with PVS based on its effectiveness, feasibility, and safety. Restenosis upon medium-term follow-up is relatively rare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.