In this paper, the short-term load forecast by use of autoregressive moving average (ARMA) model including non-Gaussian process considerations is proposed. In the proposed method, the concept of cumulant and bispectrum are embedded into the ARMA model in order to facilitate Gaussian and non-Gaussian process. With embodiment of a Gaussianity verification procedure, the forecasted model is identified more appropriately. Therefore, the performance of ARMA model is better ensured, improving the load forecast accuracy significantly. The proposed method has been applied on a practical system and the results are compared with other published techniques.
High-frequency operation with ultrathin, lightweight, and extremely flexible semiconducting electronics is highly desirable for the development of mobile devices, wearable electronic systems, and defense technologies. In this work, the experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe-MoS junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density, and flexible electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.