In this paper, we investigated the effect of luminescence properties of various concentrations of magnesium-doped ZnS:Mn phosphor excited by plasma luminescence device. The PL intensity was evaluated in the range of 300~500 nm excitation wavelengths. We found the highest PL intensity of the phosphors excited by 365 nm and 450 nm was observed at Mg concentrations of 1.4 wt% and 0.8 wt%, respectively. In addition, an emission peak was distinguished at 580 nm wavelength. With increasing Mg dopant level, enhanced PL intensity was observed, which is possibly applicable to color converting materials by blue emission for white light sources. Finally, we evaluated the luminance properties of color converting ZnS:Mn,Mg phosphors with plasma blue light source. the white luminance of plasma light source with CIE(0.36,0.26) was established by color converting phosphors of ZnS:Mn with 0.8 wt% Mg.
Recently, microcavity is studied to reduce the optical loss of BLU and OLED. In this paper, we suggest applying microcavity to photo-luminescent lamp with plasma discharge technology to meet the display applications for a BLU for LCD. The structure of photo-luminescent lamp consists of SUS foil and ITO glass with microcavity. The opto-electric characteristics of photo-luminescent lamp with microcavity was evaluated. The brightness of photo-luminescent device was increased over 111 cd/m 2 with the adaptation of patterned microcavity at 30 μm. The 3D optical simulation verified the enhanced light outcoupling when microcavity applied to the device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.