Here, we developed highly sensitive piezoelectric sensors in which flexible membrane components were harmoniously integrated. An electrospun nanofiber mat of poly(vinylidenefluoride-co-trifluoroethylene) was sandwiched between two elastomer sheets with sputtered electrodes as an active layer for piezoelectricity. The developed sensory system was ultrasensitive in response to various microscale mechanical stimuli and able to perceive the corresponding deformation at a resolution of 1 μm. Owing to the highly flexible and resilient properties of the components, the durability of the device was sufficiently stable so that the measuring performance could still be effective under harsh conditions of repetitive stretching and folding. When employing spin-coated thin elastomer films, the thickness of the entire sandwich architecture could be less than 100 μm, thereby achieving sufficient compliance of mechanical deformation to accommodate artery-skin motion of the heart pulse. These skin-attachable film- or sheet-type mechanical sensors with high flexibility are expected to enable various applications in the field of wearable devices, medical monitoring systems, and electronic skin.
Here, we present a simple yet highly efficient method to enhance the output performance of a piezoelectric device containing electrospun nanofiber mats. Multiple nanofiber mats were assembled together to harness larger piezoelectric sources in the as-spun fibers, thereby providing enhanced voltage and current outputs compared to those of a single-mat device. In addition to the multilayer assembly, microbead-based electrodes were integrated with the nanofiber mats to deliver a complexed compression and tension force excitation to the piezoelectric layers. A vacuum-packing process was performed to attain a tight and well-organized assembly of the device components even though the total thickness was several millimeters. The integrated piezoelectric device exhibited a maximum voltage and current of 10.4 V and 2.3 μA, respectively. Furthermore, the robust integrity of the device components could provide high-precision sensitivity to perceive small pressures down to approximately 100 Pa while retaining a linear input-output relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.