A photovoltaic system generates energy that depends on the environmental conditions such as temperature, irradiance and the variations in the load connected to it. To adapt to the consistently increasing interest of energy, the photovoltaic (PV) system must operate at maximum power point (MPP), however, it has the issue of low efficiency because of the varying climatic conditions. To increase its efficiency, a maximum power point technique is required to extract maximum power from the PV system. In this paper, a nonlinear fast and efficient maximum power point tracking (MPPT) technique is developed based on the robust integral backstepping (RIB) approach to harvest maximum power from a PV array using non-inverting DC-DC buck-boost converter. The study uses a NeuroFuzzy network to generate the reference voltage for MPPT. Asymptotic stability of the whole system is verified using Lyapunov stability criteria. The MATLAB/Simulink platform is used to test the proposed controller performance under varying meteorological conditions. The simulation results validate that the proposed controller effectively improves the MPPT in terms of tracking speed and efficiency. For further validation of the proposed controller performance, a comparative study is presented with backstepping controller, integral backstepping, robust backstepping and conventional MPPT algorithms (PID and P&O) under rapidly varying environmental conditions.
An intelligent control of photovoltaics is necessary to ensure fast response and high efficiency under different weather conditions. This is often arduous to accomplish using traditional linear controllers, as photovoltaic systems are nonlinear and contain several uncertainties. Based on the analysis of the existing literature of Maximum Power Point Tracking (MPPT) techniques, a high performance neuro-fuzzy indirect wavelet-based adaptive MPPT control is developed in this work. The proposed controller combines the reasoning capability of fuzzy logic, the learning capability of neural networks and the localization properties of wavelets. In the proposed system, the Hermite Wavelet-embedded Neural Fuzzy (HWNF)-based gradient estimator is adopted to estimate the gradient term and makes the controller indirect. The performance of the proposed controller is compared with different conventional and intelligent MPPT control techniques. MATLAB results show the superiority over other existing techniques in terms of fast response, power quality and efficiency.
Abstract:The charging infrastructure plays a key role in the healthy and rapid development of the electric vehicle industry. This paper presents an energy management and control system of an electric vehicle charging station. The charging station (CS) is integrated to a grid-connected hybrid power system having a wind turbine maximum power point tracking (MPPT) controlled subsystem, photovoltaic (PV) MPPT controlled subsystem and a controlled solid oxide fuel cell with electrolyzer subsystem which are characterized as renewable energy sources. In this article, an energy management system is designed for charging and discharging of five different plug-in hybrid electric vehicles (PHEVs) simultaneously to fulfil the grid-to-vehicle (G2V), vehicle-to-grid (V2G), grid-to-battery storage system (G2BSS), battery storage system-to-grid (BSS2G), battery storage system-to-vehicle (BSS2V), vehicle-to-battery storage system (V2BSS) and vehicle-to-vehicle (V2V) charging and discharging requirements of the charging station. A simulation test-bed in Matlab/Simulink is developed to evaluate and control adaptively the AC-DC-AC converter of non-renewable energy source, DC-DC converters of the storage system, DC-AC grid side inverter and the converters of the CS using adaptive proportional-integral-derivate (AdapPID) control paradigm. The effectiveness of the AdapPID control strategy is validated through simulation results by comparing with conventional PID control scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.