Somatic mutations drive cancer development and may contribute to ageing and other diseases. Yet, the di culty of detecting mutations present only in single cells or small clones has limited our knowledge of somatic mutagenesis to a minority of tissues. To overcome these limitations, we introduce nanorate sequencing (NanoSeq), a new duplex sequencing protocol with error rates <5 errors per billion base pairs in single DNA molecules from cell populations. The version of the protocol described here uses clean genome fragmentation with a restriction enzyme to prevent end-repair-associated errors and ddBTPs/dATPs during A-tailing to prevent nick extension. Both changes reduce the error rate of standard duplex sequencing protocols by preventing the xation of DNA damage into both strands of DNA molecules during library preparation. We also use qPCR quanti cation of the library prior to ampli cation to optimise the complexity of the sequencing library given the desired sequencing coverage, maximising duplex coverage. The sample preparation protocol takes between 1 and 2 days, depending on the number of samples processed. The bioinformatic protocol is described in:
The colorectal adenoma-carcinoma sequence has provided a paradigmatic framework for understanding the successive somatic genetic changes and consequent clonal expansions leading to cancer. As for most cancer types, however, understanding of the earliest phases of colorectal neoplastic change, which may occur in morphologically normal tissue, is comparatively limited. Here, we whole genome sequenced hundreds of normal crypts from 42 individuals. Signatures of multiple mutational processes were revealed, some ubiquitous and continuous, others only found in some individuals, in some crypts or during certain periods of life. Likely driver mutations were present in ~1% of normal colorectal crypts in middle-aged individuals, indicating that adenomas and carcinomas are rare outcomes of a pervasive process of neoplastic change across morphologically normal colorectal epithelium. Colorectal cancers exhibit substantially elevated mutation burdens relative to normal cells. Sequencing normal colorectal cells provides quantitative insights into the genomic and clonal evolution of cancerdriver mutations, which conceivably are morphologically indistinguishable from normal cells, are similarly unclear. In large part, these deficiencies are due to the technical challenge of identifying somatic mutations in normal tissues, which are composed of myriad microscopic cell clones. Several different approaches have been adopted to address this 4-14 , revealing signatures of common somatic mutational processes in normal cells of the small and large intestine, liver, blood, skin, and nervous system. Thus far, however, studies have not been of sufficient scale to characterise variation in signature activity or detect less frequent processes 4-14. Remarkably high proportions of normal skin, oesophageal, and endometrial epithelial cells have been shown to be members of clones already carrying driver mutations 10,11,15,16 , and large mutant clones have been detected in blood 17-20. The extent of this phenomenon in the colon, an organ with a high cancer incidence, has not been investigated. Colonic epithelium is a contiguous cell sheet organised into ~15,000,000 crypts each composed of ~2,000 cells 21. Towards the base of each crypt resides a small number of stem cells ancestral to the maturing and differentiated cells in the crypt 22. These stem cells stochastically replace one another through a process of neutral drift 23,24 such that all stem cells, and thus all cells, in a crypt derive from a single ancestor stem cell that existed in recent years 25-27. The somatic mutations that were present in this ancestor are thus found in all ~2,000 descendant cells and can be revealed by DNA sequencing of an individual crypt. These stem cells are thought to be the cells of origin of colorectal cancers 28. To characterise the earliest stages of colorectal carcinogenesis, somatic mutation burdens, mutational signatures, clonal dynamics, and the frequency of driver mutations in normal colorectal epithelium were explored by sequencing individual colorect...
The human leukocyte antigen (HLA) haplotype DRB1*15:01 is the major risk factor for multiple sclerosis (MS). Here, we find that DRB1*15:01 is hypomethylated and predominantly expressed in monocytes among carriers of DRB1*15:01. A differentially methylated region (DMR) encompassing HLA-DRB1 exon 2 is particularly affected and displays methylation-sensitive regulatory properties in vitro. Causal inference and Mendelian randomization provide evidence that HLA variants mediate risk for MS via changes in the HLA-DRB1 DMR that modify HLA-DRB1 expression. Meta-analysis of 14,259 cases and 171,347 controls confirms that these variants confer risk from DRB1*15:01 and also identifies a protective variant (rs9267649, p < 3.32 × 10−8, odds ratio = 0.86) after conditioning for all MS-associated variants in the region. rs9267649 is associated with increased DNA methylation at the HLA-DRB1 DMR and reduced expression of HLA-DRB1, suggesting a modulation of the DRB1*15:01 effect. Our integrative approach provides insights into the molecular mechanisms of MS susceptibility and suggests putative therapeutic strategies targeting a methylation-mediated regulation of the major risk gene.
Multiple sclerosis (MS) is a chronic inflammatory, likely autoimmune disease of the central nervous system with a combination of genetic and environmental risk factors, among which Epstein-Barr virus (EBV) infection is a strong suspect. We have previously identified increased autoantibody levels toward the chloride-channel protein Anoctamin 2 (ANO2) in MS. Here, IgG antibody reactivity toward ANO2 and EBV nuclear antigen 1 (EBNA1) was measured using bead-based multiplex serology in plasma samples from 8,746 MS cases and 7,228 controls. We detected increased anti-ANO2 antibody levels in MS (P = 3.5 × 10−36) with 14.6% of cases and 7.8% of controls being ANO2 seropositive (odds ratio [OR] = 1.6; 95% confidence intervals [95%CI]: 1.5 to 1.8). The MS risk increase in ANO2-seropositive individuals was dramatic when also exposed to 3 known risk factors for MS: HLA-DRB1*15:01 carriage, absence of HLA-A*02:01, and high anti-EBNA1 antibody levels (OR = 24.9; 95%CI: 17.9 to 34.8). Reciprocal blocking experiments with ANO2 and EBNA1 peptides demonstrated antibody cross-reactivity, mapping to ANO2 [aa 140 to 149] and EBNA1 [aa 431 to 440]. HLA gene region was associated with anti-ANO2 antibody levels and HLA-DRB1*04:01 haplotype was negatively associated with ANO2 seropositivity (OR = 0.6; 95%CI: 0.5 to 0.7). Anti-ANO2 antibody levels were not increased in patients from 3 other inflammatory disease cohorts. The HLA influence and the fact that specific IgG production usually needs T cell help provides indirect evidence for a T cell ANO2 autoreactivity in MS. We propose a hypothesis where immune reactivity toward EBNA1 through molecular mimicry with ANO2 contributes to the etiopathogenesis of MS.
We use polygenic risk scores (PRSs) for schizophrenia (SCZ) and bipolar disorder (BPD) to predict smoking, and addiction to nicotine, alcohol or drugs in individuals not diagnosed with psychotic disorders. Using PRSs for 144 609 subjects, including 10 036 individuals admitted for in‐patient addiction treatment and 35 754 smokers, we find that diagnoses of various substance use disorders and smoking associate strongly with PRSs for SCZ (P = 5.3 × 10−50–1.4 × 10−6) and BPD (P = 1.7 × 10−9–1.9 × 10−3), showing shared genetic etiology between psychosis and addiction. Using standardized scores for SCZ and BPD scaled to a unit increase doubling the risk of the corresponding disorder, the odds ratios for alcohol and substance use disorders range from 1.19 to 1.31 for the SCZ‐PRS, and from 1.07 to 1.29 for the BPD‐PRS. Furthermore, we show that as regular smoking becomes more stigmatized and less prevalent, these biological risk factors gain importance as determinants of the behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.