The causes of sporadic human cancer are seldom recognized, but it is estimated that carcinogen exposure and chronic inflammation are two important underlying conditions for tumour development, the latter accounting for approximately 20% of human cancer. Whereas the causal relationship between carcinogen exposure and cancer has been intensely investigated, the molecular and cellular mechanisms linking chronic inflammation to tumorigenesis remain largely unresolved. We proposed that activation of the nuclear factor kappaB (NF-kappaB), a hallmark of inflammatory responses that is frequently detected in tumours, may constitute a missing link between inflammation and cancer. To test this hypothesis, we studied the Mdr2-knockout mouse strain, which spontaneously develops cholestatic hepatitis followed by hepatocellular carcinoma, a prototype of inflammation-associated cancer. We monitored hepatitis and cancer progression in Mdr2-knockout mice, and here we show that the inflammatory process triggers hepatocyte NF-kappaB through upregulation of tumour-necrosis factor-alpha (TNFalpha) in adjacent endothelial and inflammatory cells. Switching off NF-kappaB in mice from birth to seven months of age, using a hepatocyte-specific inducible IkappaB-super-repressor transgene, had no effect on the course of hepatitis, nor did it affect early phases of hepatocyte transformation. By contrast, suppressing NF-kappaB inhibition through anti-TNFalpha treatment or induction of IkappaB-super-repressor in later stages of tumour development resulted in apoptosis of transformed hepatocytes and failure to progress to hepatocellular carcinoma. Our studies thus indicate that NF-kappaB is essential for promoting inflammation-associated cancer, and is therefore a potential target for cancer prevention in chronic inflammatory diseases.
Serum amyloid A (SAA), the precursor protein in inflammation-associated reactive amyloidosis (AA-type), is an acute phase reactant whose level in the blood increases in response to various insults. It is expressed in the liver, but its physiological role is not well understood. Recently, a broader view of SAA expression and function has been emerging. Expression studies show local production of SAA proteins in histologically normal, atherosclerotic, Alzheimer, inflammatory, and tumor tissues. Binding sites in the SAA protein for high density lipoproteins, calcium, laminin, and heparin/heparan-sulfate were described. Adhesion motifs were identified and new functions, affecting cell adhesion, migration, proliferation and aggregation have been described. These findings emphasize the importance of SAA in various physiological and pathological processes, including inflammation, atherosclerosis, thrombosis, AA-amyloidosis, rheumatoid arthritis, and neoplasia. In addition, recent experiments suggest that SAA may play a "housekeeping" role in normal human tissues.
elsewhere (35, 36).Probes and in Situ Hybridization. RNA probes were transcribed from pGEM-1 transcription plasmid (Promega) that contained a 110-bp sequence of mouse SAA1 cDNA (p125) (37). This nucleotide sequence encompasses a domain coding for amino residues 30-66 that is highly conserved among various species and is 81% homologous with human SAA1 and SAA2 mRNAs and is 71% homologous with human apoSAA4 mRNA (refs. 4
3186The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.
SUMMARY Serum amyloid A (SAA) is an acute-phase reactant whose level in the blood is elevated to 1000-fold as part of the body's responses to various injuries, including trauma, infection, inflammation, and neoplasia. As an acute-phase reactant, the liver has been considered to be the primary site of expression. However, limited extrahepatic SAA expression was described in mouse tissues and in cells of human atherosclerotic lesions. Here we describe nonradioactive in situ hybridization experiments revealing that the SAA mRNA is widely expressed in many histologically normal human tissues. Expression was localized predominantly to the epithelial components of a variety of tissues, including breast, stomach, small and large intestine, prostate, lung, pancreas, kidney, tonsil, thyroid, pituitary, placenta, skin epidermis, and brain neurons. Expression was also observed in lymphocytes, plasma cells, and endothelial cells. RT-PCR analysis of selected tissues revealed expression of the SAA1, SAA2, and SAA4 genes but not of SAA3, consistent with expression of these genes in the liver. Immunohistochemical staining revealed SAA protein expression that colocalized with SAA mRNA expression. These data indicate local production of the SAA proteins in histologically normal human extrahepatic tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.