Genomic instability is a characteristic of most cancers. In hereditary cancers, genomic instability results from mutations in DNA repair genes and drives cancer development, as predicted by the mutator hypothesis. In sporadic (non-hereditary) cancers the molecular basis of genomic instability remains unclear, but recent high-throughput sequencing studies suggest that mutations in DNA repair genes are infrequent before therapy, arguing against the mutator hypothesis for these cancers. Instead, the mutation patterns of the tumour suppressor TP53 (which encodes p53), ataxia telangiectasia mutated (ATM) and cyclin-dependent kinase inhibitor 2A (CDKN2A; which encodes p16INK4A and p14ARF) support the oncogene-induced DNA replication stress model, which attributes genomic instability and TP53 and ATM mutations to oncogene-induced DNA damage.
The yeast single-strand TG-repeat telomere binding protein Cdc13 and the telomerase accessory protein Est1 play essential roles in chromosome end replication. To determine whether a proposed Cdc13-Est1 interaction recruits telomerase (Est2), we used a simplified system in which telomere formation was monitored at an HO-induced DNA double-strand break (DSB). Tethering of either Cdc13 or Est1 adjacent to a DSB promoted telomere formation, and tethering of Est1, even in the absence of a DSB, resulted in the recruitment of Est2. Est1 association with a DSB containing an adjacent short TG-repeat sequence depended on the Cdc13-Est1 interaction affected by cdc13-2 and est1-60 mutations, whereas Cdc13 association did not. Similarly, Est2 binding to the DSB also required the Cdc13-Est1 interaction, but not synthesis of new TG repeats at the break site. These data demonstrate a critical role for Est1 in recruiting telomerase to its site of action, in cooperation with the telomere binding protein Cdc13.
The ability to reprogram adult cells into stem cells has raised hopes for novel therapies for many human diseases. Typical stem cell reprogramming protocols involve expression of a small number of genes in differentiated somatic cells with the c-Myc and Klf4 protooncogenes typically included in this mix. We have previously shown that expression of oncogenes leads to DNA replication stress and genomic instability, explaining the high frequency of p53 mutations in human cancers. Consequently, we wondered whether stem cell reprogramming also leads to genomic instability. To test this hypothesis we examined stem cells induced by a variety of protocols. The first protocol, developed specifically for this study, reprogrammed primary mouse mammary cells into mammary stem cells by expressing c-Myc. Two other previously established protocols reprogrammed mouse embryo fibroblasts into induced pluripotent stem (iPS) cells by expressing either 3 genes, Oct4, Sox2 and Klf4 (OSK), or 4 genes, OSK plus c-Myc (OSKC). Comparative genomic hybridization (cGH) analysis of stem cells derived by these protocols revealed the presence of genomic deletions and amplifications, whose signature was suggestive of oncogene-induced DNA replication stress. The genomic aberrations were to a significant degree dependent on c-Myc expression and their presence could explain why p53 inactivation facilitates stem cell reprogramming.
Eukaryotic cells distinguish their chromosome ends from accidental DNA double-strand breaks by packaging them in a protective structure referred to as the telomere "cap." Here we investigate the nature of the telomere cap by examining events at DNA breaks generated adjacent to either natural telomeric sequences (TG repeats) or arrays of Rap1-binding sites that vary in length. Although DNA breaks adjacent to either short or long telomeric sequences are efficiently converted into stable telomeres, they elicit very different initial responses. Short telomeric sequences (80 base pair [bp]) are avidly bound by Mre11, as well as the telomere capping protein Cdc13 and telomerase enzyme, consistent with their rapid telomerase-dependent elongation. Surprisingly, little or no Mre11 binding is detected at long telomere tracts (250 bp), and this is correlated with reduced Cdc13 and telomerase binding. Consistent with these observations, ends with long telomere tracts undergo strongly reduced exonucleolytic resection and display limited binding by both Rpa1 and Mec1, suggesting that they fail to elicit a checkpoint response. Rap1 binding is required for end concealment at long tracts, but Rif proteins, yKu, and Cdc13 are not. These results shed light on the nature of the telomere cap and mechanisms that regulate telomerase access at chromosome ends.[Keywords: DNA double-strand break; telomere capping; telomerase; DNA damage checkpoint; telomere length regulation] Supplemental material is available at http://www.genesdev.org.
TopBP1 is a checkpoint protein that colocalizes with ATR at sites of DNA replication stress. In this study, we show that TopBP1 also colocalizes with 53BP1 at sites of DNA double-strand breaks (DSBs), but only in the G1-phase of the cell cycle. Recruitment of TopBP1 to sites of DNA replication stress was dependent on BRCT domains 1-2 and 7-8, whereas recruitment to sites of DNA DSBs was dependent on BRCT domains 1-2 and 4-5. The BRCT domains 4-5 interacted with 53BP1 and recruitment of TopBP1 to sites of DNA DSBs in G1 was dependent on 53BP1. As TopBP1 contains a domain important for ATR activation, we examined whether it contributes to the G1 cell cycle checkpoint. By monitoring the entry of irradiated G1 cells into S-phase, we observed a checkpoint defect after siRNA-mediated depletion of TopBP1, 53BP1 or ATM. Thus, TopBP1 may mediate the checkpoint function of 53BP1 in G1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.