Societal biases resonate in the retrieved contents of information retrieval (IR) systems, resulting in reinforcing existing stereotypes. Approaching this issue requires established measures of fairness regarding the representation of various social groups in retrieved contents, as well as methods to mitigate such biases, particularly in the light of the advances in deep ranking models. In this work, we first provide a novel framework to measure the fairness in the retrieved text contents of ranking models. Introducing a ranker-agnostic measurement, the framework also enables the disentanglement of the effect on fairness of collection from that of rankers. Second, we propose an adversarial bias mitigation approach applied to the stateof-the-art Bert rankers, which jointly learns to predict relevance and remove protected attributes. We conduct experiments on two passage retrieval collections (MS MARCO Passage Re-ranking and TREC Deep Learning 2019 Passage Re-ranking), which we extend by fairness annotations of a selected subset of queries regarding gender attributes. Our results on the MS MARCO benchmark show that, while the fairness of all ranking models is lower than the ones of ranker-agnostic baselines, the fairness in retrieved contents significantly improves when applying the proposed adversarial training. Lastly, we investigate the trade-off between fairness and utility, showing that through applying a combinatorial model selection method, we can maintain the significant improvements in fairness without any significant loss in utility.
CCS CONCEPTS• Information systems → Learning to rank; Test collections.
We assume that recommender systems are more successful, when they are based on a thorough understanding of how people process information. In the current paper we test this assumption in the context of social tagging systems. Cognitive research on how people assign tags has shown that they draw on two interconnected levels of knowledge in their memory: on a conceptual level of semantic fields or topics, and on a lexical level that turns patterns on the semantic level into words. Another strand of tagging research reveals a strong impact of time dependent forgetting on users' tag choices, such that recently used tags have a higher probability being reused than "older" tags. In this paper, we align both strands by implementing a computational theory of human memory that integrates the two-level conception and the process of forgetting in form of a tag recommender and test it in three large-scale social tagging datasets (drawn from BibSonomy, CiteULike and Flickr).As expected, our results reveal a selective effect of time: forgetting is much more pronounced on the lexical level of tags. Second, an extensive evaluation based on this observation shows that a tag recommender interconnecting both levels and integrating time dependent forgetting on the lexical level results in high accuracy predictions and outperforms other well-established algorithms, such as Collaborative Filtering, Pairwise Interaction Tensor Factorization, FolkRank and two alternative time dependent approaches. We conclude that tag recommenders can benefit from going beyond the manifest level of word co-occurrences, and from including forgetting processes on the lexical level.
Recommender systems have become important tools to support users in identifying relevant content in an overloaded information space. To ease the development of recommender systems, a number of recommender frameworks have been proposed that serve a wide range of application domains. Our TagRec framework is one of the few examples of an open-source framework tailored towards developing and evaluating tag-based recommender systems. In this paper, we present the current, updated state of TagRec, and we summarize and re ect on four use cases that have been implemented with TagRec: (i) tag recommendations, (ii) resource recommendations, (iii) recommendation evaluation, and (iv) hashtag recommendations. To date, TagRec served the development and/or evaluation process of tag-based recommender systems in two large scale European research projects, which have been described in 17 research papers.us, we believe that this work is of interest for both researchers and practitioners of tag-based recommender systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.