We used a novel approach for the direct ex vivo identification and characterization of T cell epitopes based on the screening of peptide spot libraries with freshly isolated splenocytes in a sensitive enzyme-linked immunospot (ELISPOT) assay. This technique was applied for the analysis of splenocytes from Listeria monocytogenes-infected BALB/c and C57BL/6 mice. The screening of peptide spot libraries covering the whole listeriolysin O and p60 of L. monocytogenes confirmed all known CD4 and CD8 T cell epitopes of these proteins and additionally revealed six new H-2d and six new H-2b-restricted T cell epitopes. New epitopes were categorized into CD4 and CD8 T cell epitopes by ex vivo ELISPOT analysis with separated T cell populations. The quantitative analysis of cells reactive with these CD4 and CD8 T cell epitopes revealed the existence of dominant and subdominant CD4 and CD8 T cell populations during L. monocytogenes infection. As a consequence of these data we suggest that ELISPOT-based screening of peptide spot libraries could be a general approach for the rapid identification and characterization of pathogen-specific T cell populations during various infectious diseases.
Listeriolysin O (LLO) mediates the evasion of Listeria monocytogenes from the phagolysosome into the cytoplasm of the host cell. The recognition of infected cells by CD4 T cells is thought to be limited by the evasion of bacteria from the phagolysosome and also by the direct LLO-mediated inhibition of CD4 T cell activation. To analyze the influence of these immunoevasive mechanisms on the antilisterial CD4 T cell response, the expansion of L. monocytogenes-specific CD4 and CD8 T cells was monitored in infected mice. It was found that expansion of L. monocytogenes-specific CD4 T cells occurred synchronously with CD8 T cell expansion. The analysis of Ag presentation by macrophages and dendritic cells isolated from spleens of infected mice revealed efficient presentation of L. monocytogenes-derived CD4 T cell epitopes that was not dependent on the actA-mediated intercellular spread of bacteria. The further in vitro Ag presentation analysis revealed that although L. monocytogenes-infected macrophages and dendritic cells were poor presenters of CD4 T cell epitopes, more efficient presentation occurred after cocultivation of noninfected dendritic cells or macrophages with infected cells. These data indicate that the suppressive effect of LLO on the antilisterial CD4 T cell response is maintained only in infected APC and support the hypothesis that cross-priming plays a role in the induction of the strong CD4 T cell response in Listeria-infected mice.
Adoptive transfer of CD8 T cells has the potential to cure infectious or malignant diseases that are refractory to conventional chemotherapy. A practically important but still unanswered question is whether mixtures of protective CD8 T cells with different epitope specificities mediate more efficient effector cell functions than do the monospecific individual CD8 T cell populations. In this study, we have addressed this issue for models of viral and bacterial infection. CD8 T cell-mediated cytotoxicity in vitro and protection in vivo were assessed to test whether CD8 T cell lines cooperate in target cell lysis and control of infection, respectively. Our data clearly show that mixtures of cytolytic T cell lines specific for different epitopes of either murine cytomegalovirus or Listeria monocytogenes do not act synergistically. An efficient anti-infectious protection thus proved to be dependent primarily on the number of transferred protective CD8 T cells rather than on the cooperative effects of multiple specificities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.