MicroRNAs (miRNAs) are single-stranded, non-coding, 19–25 nucleotide RNA molecules that have been observed to be dysregulated in many diseases including cancer. miRNAs have been known to play an important role in cellular proliferation, differentiation, migration, apoptosis, survival, and morphogenesis. Breast cancer is heterogeneous in nature and contributed extensively to the increased mortality rate. miRNA can either be tumor-suppressive or oncogenic in nature. The level of expression of miRNA changes according to the subtypes of cancer and the mutation responsible for different cancers. miRNA mimicry or inhibition are emerging possible therapies to maintain the level of miRNA inside the cells. In order to have proper miRNA mimicry, the major hurdle is to deliver the miRNA mimics at the site of tumor. Metallic nanoparticles with modified surface can be used to solve the problem of miRNA delivery. MiR-206 is reported to be down-regulated in Luminal-A type of breast cancer. In the current manuscript, we aim to modify the surface of gold-nanoparticles (AuNPs) with PEG moiety and allow miRNA to attach to it. The fabricated nano-complex, not only delivered miR-206 but also caused cell death in MCF-7 by arresting cells in the G0-G1 phase and inducing apoptosis by downregulating NOTCH 3.
Nanotechnology has increasingly emerged as a promising tool for exploring new approaches, from treating complex conditions to early detection of the onset of multiple disease states. Tailored designer nanoparticles can...
The versatile nature of macrophages and their ability to switch between various activation states plays a pivotal role in both promoting and inhibiting inflammatory processes. In pathological inflammatory conditions, classically activated M1 macrophages are often associated with initiating and maintaining inflammation, while alternatively activated M2 macrophages are linked to the resolution of chronic inflammation. Achieving a favorable equilibrium between M1 and M2 macrophages is crucial for mitigating inflammatory environments in pathological conditions. Polyphenols are known to have strong inherent antioxidative capabilities, and curcumin has been found to reduce macrophage inflammatory reactions. However, its therapeutic efficacy is compromised due to its poor bioavailability. The present study aims to harness the properties of curcumin by loading it in nanoliposomes and enhancing the M1-to-M2 macrophage polarization. A stable liposome formulation was achieved at 122.1 ± 0.08 nm, and a sustained kinetic release of curcumin was observed within 24 h. The nanoliposomes were further characterized using TEM, FTIR, and XRD, and the morphological changes in macrophage cells, RAW264.7, were observed in SEM, indicating a distinct M2-type phenotype after the treatment with liposomal curcumin. ROS may partially control macrophage polarization and be observed to decrease after treatment with liposomal curcumin. The nanoliposomes were able to successfully internalize in the macrophage cells, and an enhanced expression of ARG-1 and CD206 with a decrease in iNOS, CD80, and CD86 levels suggested the polarization of LPS-activated macrophages toward the M2 phenotype. Also, liposomal curcumin treatment dose-dependently inhibited TNF-α, IL-2, IFN-γ, and IL-17A at secretory levels and simultaneously increased the levels of cytokines like IL-4, IL-6, and IL-10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.