Identification of intrinsic disorder in proteins relies in large part on computational predictors, which demands that their accuracy should be high. Since intrinsic disorder carries out a broad range of cellular functions, it is desirable to couple the disorder and disorder function predictions. We report a computational tool, flDPnn, that provides accurate, fast and comprehensive disorder and disorder function predictions from protein sequences. The recent Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment and results on other test datasets demonstrate that flDPnn offers accurate predictions of disorder, fully disordered proteins and four common disorder functions. These predictions are substantially better than the results of the existing disorder predictors and methods that predict functions of disorder. Ablation tests reveal that the high predictive performance stems from innovative ways used in flDPnn to derive sequence profiles and encode inputs. flDPnn’s webserver is available at http://biomine.cs.vcu.edu/servers/flDPnn/
Motivation There are over 30 sequence-based predictors of the protein-binding residues (PBRs). They use either structure-annotated or disorder-annotated training datasets, potentially creating a dichotomy where the structure/disorder-specific models may not be able to cross-over to accurately predict the other type. Moreover, the structure-trained predictors were shown to substantially cross-predict PBRs among residues that interact with non-protein partners (nucleic acids and small ligands). We address these issues by performing first-of-its-kind comparative study of a representative collection of disorder- and structure-trained predictors using a comprehensive benchmark set with the structure- and disorder-derived annotations of PBRs (to analyze the cross-over) and the protein-, nucleic acid- and small ligand-binding proteins (to study the cross-predictions). Results Three predictors provide accurate results: SCRIBER, ANCHOR and disoRDPbind. Some of the structure-trained methods make accurate predictions on the structure-annotated proteins. Similarly, the disorder-trained predictors predict well on the disorder-annotated proteins. However, the considered predictors generally fail to cross-over, with the exception of SCRIBER. Our study also reveals that virtually all methods substantially cross-predict PBRs, except for SCRIBER for the structure-annotated proteins and disoRDPbind for the disorder-annotated proteins. We formulate a novel hybrid predictor, hybridPBRpred, that combines results produced by disoRDPbind and SCRIBER to accurately predict disorder- and structure-annotated PBRs. HybridPBRpred generates accurate results that cross-over structure- and disorder-annotated proteins and produces relatively low amount of cross-predictions, offering an accurate alternative to predict PBRs. Availability HybridPBRpred webserver, benchmark dataset and supplementary information are available at http://biomine.cs.vcu.edu/servers/hybridPBRpred/.
Efforts to elucidate protein–DNA interactions at the molecular level rely in part on accurate predictions of DNA-binding residues in protein sequences. While there are over a dozen computational predictors of the DNA-binding residues, they are DNA-type agnostic and significantly cross-predict residues that interact with other ligands as DNA binding. We leverage a custom-designed machine learning architecture to introduce DNAgenie, first-of-its-kind predictor of residues that interact with A-DNA, B-DNA and single-stranded DNA. DNAgenie uses a comprehensive physiochemical profile extracted from an input protein sequence and implements a two-step refinement process to provide accurate predictions and to minimize the cross-predictions. Comparative tests on an independent test dataset demonstrate that DNAgenie outperforms the current methods that we adapt to predict residue-level interactions with the three DNA types. Further analysis finds that the use of the second (refinement) step leads to a substantial reduction in the cross predictions. Empirical tests show that DNAgenie’s outputs that are converted to coarse-grained protein-level predictions compare favorably against recent tools that predict which DNA-binding proteins interact with double-stranded versus single-stranded DNAs. Moreover, predictions from the sequences of the whole human proteome reveal that the results produced by DNAgenie substantially overlap with the known DNA-binding proteins while also including promising leads for several hundred previously unknown putative DNA binders. These results suggest that DNAgenie is a valuable tool for the sequence-based characterization of protein functions. The DNAgenie’s webserver is available at http://biomine.cs.vcu.edu/servers/DNAgenie/.
Recent research shows that majority of the druggable human proteome is yet to be annotated and explored. Accurate identification of these unexplored druggable proteins would facilitate development, screening, repurposing, and repositioning of drugs, as well as prediction of new drug–protein interactions. We contrast the current drug targets against the datasets of non-druggable and possibly druggable proteins to formulate markers that could be used to identify druggable proteins. We focus on the markers that can be extracted from protein sequences or names/identifiers to ensure that they can be applied across the entire human proteome. These markers quantify key features covered in the past works (topological features of PPIs, cellular functions, and subcellular locations) and several novel factors (intrinsic disorder, residue-level conservation, alternative splicing isoforms, domains, and sequence-derived solvent accessibility). We find that the possibly druggable proteins have significantly higher abundance of alternative splicing isoforms, relatively large number of domains, higher degree of centrality in the protein-protein interaction networks, and lower numbers of conserved and surface residues, when compared with the non-druggable proteins. We show that the current drug targets and possibly druggable proteins share involvement in the catalytic and signaling functions. However, unlike the drug targets, the possibly druggable proteins participate in the metabolic and biosynthesis processes, are enriched in the intrinsic disorder, interact with proteins and nucleic acids, and are localized across the cell. To sum up, we formulate several markers that can help with finding novel druggable human proteins and provide interesting insights into the cellular functions and subcellular locations of the current drug targets and potentially druggable proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.