Background Polycystic ovary syndrome (PCOS) is a common endocrine disease in women of reproductive age. Multiple studies have shown that long non-coding RNAs (lncRNA) and microRNAs (miRNA) play a role in PCOS. This study aimed to explore the role and molecular mechanism of lncRNA -Regulator of reprogramming (lncROR) in PCOS. Results Expression level of lncROR in PCOS patients was up-regulated, while level of miR-206 was down-regulated in comparison with control group (P < 0.001). Logistics regression analysis showed that lncROR and miR-206 were independent predictors of PCOS. The ROC curve showed that lncROR had a high diagnostic value for PCOS with an AUC value of 0.893. Pearson correlation coefficient indicated that the expression level of miR-206 was negatively correlated with the level of lncROR. CCK-8 assay and apoptosis assay revealed that downregulation of lncROR up-regulated the expression of miR-206, thereby inhibiting cell proliferation and promoting cell apoptosis. However, silencing the expression of miR-206 reversed the above effects caused by down-regulation of lncROR expression. Luciferase reporter gene assay suggested that there was a target relationship between lncROR and miR-206. VEGF was proved to be the target gene of miR-206. Conclusions Highly expressed lncROR indirectly up-regulated the expression of VEGF by down-regulating the expression of miR-206, thereby promoting the proliferation of KGN cells and inhibiting apoptosis, and further promoting the development of PCOS.
Introduction Previous studies revealed that gallic acid (GA) exerts anti‐inflammation and immuno‐regulatory properties. This study aims to explore the pharmacological activities of GA in collagen‐induced arthritis (CIA) mouse model. Methods Male DBA/1J mice were used to construct the CIA model. The mice were administrated with GA for 3 weeks. Clinical arthritis scores and hind paw volume were evaluated over the experimental period. qPCR and Western blot analysis were used to determine the levels of matrix metallopeptidases (MMPs) and cytokines. In addition, flow cytometry was used to measure the populations of Th17 and Treg cells. ELISAs were used to determine the cytokines in the serum and ankle joint tissues. Results Treatment of GA (40 and 80 mg/kg/d) reduced clinical arthritis scores and hind paw volume in the CIA mouse model. Besides, treatment of GA reduced the overexpression of MMPs and modulated the dysregulation of inflammation‐related cytokines. Flow cytometry showed that treatment of GA decreased the population of Th17 cells, and increased the population of Treg cells, as supported by treatment of GA regulated the Th17/Treg‐related cytokines. Conclusions GA attenuates symptoms in the CIA mouse model by anti‐inflammation and regulating Th17/Treg cell imbalance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.