Broccoli extract mainly contains polyphenols and glucosinolates (GSLs). GSLs can be hydrolyzed by gut microorganisms into isothiocyanates (ITCs) and other active substances. These substances have anticancer, antiinflammatory, antimicrobial, and atherosclerosis-reducing functions. In this study, a high concentration (2000 μmol/L GSLs and 24 μmol/L polyphenols) and a low concentration (83 μmol/L GSLs and 1 μmol/L polyphenols) of broccoli extract were prepared. Gut microorganisms from fresh human feces were cultured to simulate the gut environment in vitro. The GSL content decreased and the types and content of ITCs increased with broccoli extract hydrolysis through cyclic condensation and gas chromatography−mass spectrometry (GC-MS) analyses. Broccoli extract significantly increased probiotics and inhibited harmful bacteria through 16S rDNA sequencing. Based on phylum level analysis, Firmicutes and Lachnospiraceae increased significantly (P < 0.05). At the genus level, both high-and low-concentration groups significantly inhibited Escherichia and increased Bilophila and Alistipes (P < 0.05). The high-concentration group significantly increased Bif idobacterium (P < 0.05). The broccoli extract improved the richness of gut microorganisms and regulated their structure. The GSL hydrolysis was significantly correlated with Bilophila, Lachnospiraceae, Alistipes, Bif idobacterium, Escherichia, and Streptococcus (P < 0.05). These study findings provide a theoretical foundation for further exploring a probiotic mechanism of broccoli extract in the intestine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.