The pathogenesis of the influenza A virus has been investigated heavily, and both the inflammatory response and apoptosis have been found to have a definitive role in this process. The results of studies performed by the present and other groups have indicated that mast cells may play a role in the severity of the disease. To further investigate cellular responses to influenza A virus infection, apoptosis and inflammatory response were studied in mouse mastocytoma cell line P815. This is the first study to demonstrate that H1N1 (A/WSN/33), H5N1 (A/Chicken/Henan/1/04), and H7N2 (A/Chicken/Hebei/2/02) influenza viruses can induce mast cell apoptosis. They were found to do this mainly through the mitochondria/cytochrome c-mediated intrinsic pathway, and the activation of caspase 8-mediated extrinsic pathway was here found to be weak. Two pro-apoptotic Bcl-2 homology domain 3 (BH3) -only molecules Bim and Puma appeared to be involved in the apoptotic pathways. When virus-induced apoptosis was inhibited in P815 cells using pan-caspase (Z-VAD-fmk) and caspase-9 (Z-LEHD-fmk) inhibitors, the replication of these three subtypes of viruses was suppressed and the secretions of pro-inflammatory cytokines and chemokines, including IL-6, IL-18, TNF-α, and MCP-1, decreased. The results of this study may further understanding of the role of mast cells in host defense and pathogenesis of influenza virus. They may also facilitate the development of novel therapeutic aids against influenza virus infection.
ObjectivesTo identify the protective role of sodium cromoglycate in mice during influenza virus infection.DesignH5N1 virus‐infected mice were treated with the mast cell stabilizer sodium cromoglycate (SCG) to investigate its therapeutic effect.SampleThe nose, trachea and lungs from mice were collected.Main outcome measuresVirus replication and host responses were determined by plaque assay, quantitative PCR, immunohistochemistry, and histology.ResultsSCG‐treated mice survived better than did PBS‐treated mice after H5N1 virus infection. Mild pathological changes with fewer inflammatory cell infiltration and fewer virus antigens were observed in the nose, trachea, and lungs of SCG‐treated mice on days 3 and 5 post‐infection. However, no significant changes in viral load in the lungs were detected between SCG‐ and PBS‐treated mice. Furthermore, significantly decreased expression of interleukin‐6, tumor necrosis factor‐a, Toll‐like receptor 3, and TIR‐domain‐containing adapter‐inducing interferon‐b was detected in the lungs of SCG‐treated mice, and no higher expression of interferon‐c was detected.ConclusionThese results suggest that SCG has therapeutic roles in H5N1 virus‐infected mice by alleviating the inflammatory response rather than inhibition of viral replication in the lungs.
The co-polymer of transferrin-conjugated chitosan-graft-poly(l-lysine) dendrons was used to deliver the MMP-9 shRNA plasmid effectively for nasopharyngeal carcinoma gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.