A metal-free three component cyclization reaction with amidation is devised for direct synthesis of DFT-designed amido-phenazine derivative bearing noncovalent gluing interactions to fabricate organic nanomaterials. Composition-dependent organic nanoelectronics for nonvolatile memory devices are discovered using mixed phenazine-stearic acid (SA) nanomaterials. We discovered simultaneous two different types of nonmagnetic and non-moisture sensitive switching resistance properties of fabricated devices utilizing mixed organic nanomaterials: (a) sample-1(8:SA = 1:3) is initially off, turning on at a threshold, but it does not turn off again with the application of any voltage, and (b) sample-2 (8:SA = 3:1) is initially off, turning on at a sharp threshold and off again by reversing the polarity. No negative differential resistance is observed in either type. These samples have different device implementations: sample-1 is attractive for write-once-read-many-times memory devices, such as novel non-editable database, archival memory, electronic voting, radio frequency identification, sample-2 is useful for resistive-switching random access memory application.
Organic fluorescent semiconducting nanomaterials have gained widespread research interest owing to their potential applications in the arena of high-tech devices. We designed two pyrazaacene-based compounds, their stacked system, and the role of gluing interactions to fabricate nanomaterials, and determined the prospective band gaps utilizing the density functional theory calculation. The two pyrazaacene derivatives containing complementary amide linkages (–CONH and –NHCO) were efficiently synthesized. The synthesized compounds are highly soluble in common organic solvents as well as highly fluorescent and photostable. The heterocycles and their mixture displayed efficient solvent dependent fluorescence in the visible region of the solar spectrum. Notably, the compounds were associated through complementary NH•••O = C type hydrogen bonding, π–π stacking, and hydrophobic interactions, and thereby afforded nanomaterials with a low band gap. Fascinatingly, the fabricated stacked nanomaterial system exhibited resistive switching behavior, leading to the fabrication of an efficient write-once-read-many-times memory device of crossbar structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.