Background:There are > 7,000 e-cigarette flavors currently marketed. Flavoring chemicals gained notoriety in the early 2000s when inhalation exposure of the flavoring chemical diacetyl was found to be associated with a disease that became known as “popcorn lung.” There has been limited research on flavoring chemicals in e-cigarettes.Objective:We aimed to determine if the flavoring chemical diacetyl and two other high-priority flavoring chemicals, 2,3-pentanedione and acetoin, are present in a convenience sample of flavored e-cigarettes.Methods:We selected 51 types of flavored e-cigarettes sold by leading e-cigarette brands and flavors we deemed were appealing to youth. E-cigarette contents were fully discharged and the air stream was captured and analyzed for total mass of diacetyl, 2,3-pentanedione, and acetoin, according to OSHA method 1012.Results:At least one flavoring chemical was detected in 47 of 51 unique flavors tested. Diacetyl was detected above the laboratory limit of detection in 39 of the 51 flavors tested, ranging from below the limit of quantification to 239 μg/e-cigarette. 2,3-Pentanedione and acetoin were detected in 23 and 46 of the 51 flavors tested at concentrations up to 64 and 529 μg/e-cigarette, respectively.Conclusion:Because of the associations between diacetyl and bronchiolitis obliterans and other severe respiratory diseases observed in workers, urgent action is recommended to further evaluate this potentially widespread exposure via flavored e-cigarettes.Citation:Allen JG, Flanigan SS, LeBlanc M, Vallarino J, MacNaughton P, Stewart JH, Christiani DC. 2016. Flavoring chemicals in e-cigarettes: diacetyl, 2,3-pentanedione, and acetoin in a sample of 51 products, including fruit-, candy-, and cocktail-flavored e-cigarettes. Environ Health Perspect 124:733–739; http://dx.doi.org/10.1289/ehp.1510185
Green building design is becoming broadly adopted, with one green building standard reporting over 3.5 billion square feet certified to date. By definition, green buildings focus on minimizing impacts to the environment through reductions in energy usage, water usage, and minimizing environmental disturbances from the building site. Also by definition, but perhaps less widely recognized, green buildings aim to improve human health through design of healthy indoor environments. The benefits related to reduced energy and water consumption are well-documented, but the potential human health benefits of green buildings are only recently being investigated. The objective of our review was to examine the state of evidence on green building design as it specifically relates to indoor environmental quality and human health. Overall, the initial scientific evidence indicates better indoor environmental quality in green buildings versus non-green buildings, with direct benefits to human health for occupants of those buildings. A limitation of much of the research to date is the reliance on indirect, lagging and subjective measures of health. To address this, we propose a framework for identifying direct, objective and leading “Health Performance Indicators” for use in future studies of buildings and health.
Thirty years of public health research have demonstrated that improved indoor environmental quality is associated with better health outcomes. Recent research has demonstrated an impact of the indoor environment on cognitive function. We recruited 109 participants from 10 high-performing buildings (i.e. buildings surpassing the ASHRAE Standard 62.1-2010 ventilation requirement and with low total volatile organic compound concentrations) in five U.S. cities. In each city, buildings were matched by week of assessment, tenant, type of worker and work functions. A key distinction between the matched buildings was whether they had achieved green certification. Workers were administered a cognitive function test of higher order decision-making performance twice during the same week while indoor environmental quality parameters were monitored. Workers in green certified buildings scored 26.4% (95% CI: [12.8%, 39.7%]) higher on cognitive function tests, controlling for annual earnings, job category and level of schooling, and had 30% fewer sick building symptoms than those in non-certified buildings. These outcomes may be partially explained by IEQ factors, including thermal conditions and lighting, but the findings suggest that the benefits of green certification standards go beyond measureable IEQ factors. We describe a holistic “buildingomics” approach for examining the complexity of factors in a building that influence human health.
Examiner rating captured a wider range of performance indicators than output from the flight simulator, which can characterize only a few quantitative aspects of the flight performance. More broadly, these findings suggest that there is a direct effect of carbon dioxide on performance, independent of ventilation, with implications for many other indoor environments that routinely experience CO concentrations above 1000 ppm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.