Increasing incidence coupled with poor prognosis and treatments that are virtually unchanged over the past 20 years have made the need for the development of novel therapeutics for hepatoblastoma imperative. PIM kinases have been implicated as drivers of tumorigenesis in multiple cancers, including hepatocellular carcinoma. We hypothesized that PIM kinases, specifically PIM3, would play a role in hepatoblastoma tumorigenesis and that PIM kinase inhibition would affect hepatoblastoma in vitro and in vivo. Parameters including cell survival, proliferation, motility, and apoptosis were assessed in human hepatoblastoma cells following PIM3 knockdown with siRNA or treatment with the PIM inhibitor AZD1208. An in vivo model of human hepatoblastoma was utilized to study the effects of PIM inhibition alone and in combination with cisplatin. PIM kinases were found to be present in the human hepatoblastoma cell line, HuH6, and in a human hepatoblastoma patient-derived xenograft, COA67. PIM3 knockdown or inhibition with AZD1208 decreased cell survival, attachment independent growth, and motility. Additionally, inhibition of tumor growth was observed in a hepatoblastoma xenograft model in mice treated with AZD1208. Combination therapy with AZD1208 and cisplatin resulted in a significant increase in animal survival when compared to either treatment alone. The current studies showed that PIM kinase inhibition decreased human hepatoblastoma tumorigenicity both in vitro and in vivo, implying that PIM inhibitors may be useful as a novel therapeutic for children with hepatoblastoma.
Despite the tremendous advances in the treatment of childhood solid tumors, rhabdomyosarcoma (RMS) continues to provide a therapeutic challenge. Children with metastatic or relapsed disease have a disease-free survival rate under 30%. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumorigenesis. Signaling pathways both upstream and downstream to FAK have been found to be important in sarcoma tumorigenesis, leading us to hypothesize that FAK would be present in RMS and would impact cellular survival. In the current study, we showed that FAK was present and phosphorylated in pediatric alveolar and embryonal RMS tumor specimens and cell lines. We also examined the effects of FAK inhibition upon two RMS cell lines utilizing parallel approaches including RNAi and small molecule inhibitors. FAK inhibition resulted in decreased cellular survival, invasion, and migration and increased apoptosis. Furthermore, small molecule inhibition of FAK led to decreased tumor growth in a nude mouse RMS xenograft model. The findings from this study will help to further our understanding of the regulation of tumorigenesis in RMS and may provide desperately needed novel therapeutic strategies for these difficult-to-treat tumors.
Rhabdomyosarcoma (RMS), a tumor of skeletal muscle origin, is the most common sarcoma of childhood. Despite multidrug chemotherapy regimens, surgical intervention, and radiation treatment, outcomes remain poor, especially in advanced disease, and novel therapies are needed for the treatment of these aggressive malignancies. Genetically engineered oncolytic viruses, such as herpes simplex virus-1 (HSV), are currently being explored as treatments for pediatric tumors. M002, an oncolytic HSV, has both copies of the γ134.5 gene deleted, enabling replication in tumor cells but thwarting infection of normal, postmitotic cells. We hypothesized that M002 would infect human RMS tumor cells and lead to decreased tumor cell survival in vitro and impede tumor growth in vivo. In the current study, we demonstrated that M002 could infect, replicate in, and decrease cell survival in both embryonal (ERMS) and alveolar rhabdomyosarcoma (ARMS) cells. Additionally, M002 reduced xenograft tumor growth and increased animal survival in both ARMS and ERMS. Most importantly, we showed for the first time that repeated dosing of oncolytic virus coupled with low-dose radiation provided improved tumor response in RMS. These findings provide support for the clinical investigation of oncolytic HSV in pediatric RMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.