Monuments and artistic stone surfaces are often consolidated and protected with synthetic polymers, in particular, acrylics. Although it is generally thought that acrylic polymers are resistant to biodeterioration, we report for the first time the systematic occurrence of dematiaceous meristematic fungi on many marble samples of the cathedral in Milan (Italy) previously treated with this material. Fourier transform infrared spectroscopy applied to the Milan cathedral stone samples revealed characteristic features of biodeteriorated synthetic resins that differentiated them from the aged but nonbiodeteriorated samples. Samples showing biological colonization were analyzed for the presence of fungi. Cultivation and morphological characterization and methods independent from cultivation, such as denaturing gradient gel electrophoresis coupled with partial 18S rRNA gene sequencing and immunofluorescence staining with melanin-binding antibodies, showed that melanin-producing species are heavily present on stone surfaces protected with acrylic resins. This observation raises the question of the effectiveness of acrylics in protecting stone artworks.
The genetic polymorphism of an entire Bov-A2 element located in the second intron of the buffalo and bovine k-casein (CSN3) gene was investigated by amplification and sequencing of PCR products. Single nucleotide polymorphisms were detected. A PCR-RFLP method was developed to detect an A or G mutation at position 605 of bovine Bov-A2 element which creates a BfaI polymorphic site. The frequencies of the B allele, with the BfaI site, were for 0.275, 0.775, 0.750, 0.975, respectively, for Italian Holstein Friesian, Grey Alpine, Friuli Red Pied and Reggio bovine breeds. The mutation rate (substitutions and deletions/insertions per nucleotide site per year) was 2.5 x 10(-9) for Bov-A2 sequences in the second intron of CSN3. The comparison with other Bov-A2 elements suggests that this retroelement might be an important source of single nucleotide polymorphism for analysis of Bovidae genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.