Targeted delivery of drugs to the brain is challenging due to the restricted permeability across the blood brain barrier (BBB). Gliomas are devastating cancers and their positive treatment outcome using Temozolomide (TMZ) is limited due to its short plasma half-life, systemic toxicity and limited access through the blood-brain barrier (BBB). Nanoparticles made of Lactoferrin (Lf) protein, have been shown to enhance the pharmacological properties of drugs. Here, we report the specific ability of Lf nanoparticles to cross BBB and target over-expressed Lf receptors on glioma for enhanced TMZ delivery. TMZ-loaded Lf nanoparticles (TMZ-LfNPs) were prepared by our previously reported sol-oil method. While the Lf protein in the NP matrix aids in transcytosis across the BBB and preferential tumor cell uptake, the pH responsiveness leads to TMZ release exclusively in the tumor microenvironment. Delivery through LfNPs results in an enhanced and sustained intracellular concentration of TMZ in GL261 cells in vitro along with improving its in vivo pharmacokinetics and brain accumulation. TMZ-LfNPs treatment results in a significant reduction of tumor volume, higher tumor cell apoptosis and improved median survival in glioma bearing mice. These results demonstrate that LfNPs present an efficient TMZ delivery platform for an effective treatment of gliomas.
Aim: To investigate the efficacy of lactoferrin nanoparticles (LfNPs) in delivering siRNA across the blood–brain barrier to treat glioblastoma multiforme (GBM) and with an additional objective of potentiation of conventional temozolomide (TMZ) chemotherapy. Methods: Aurora kinase B (AKB) siRNA-loaded nanoparticles (AKB–LfNPs) were prepared with milk protein, lactoferrin, by water in oil emulsion method. AKB–LfNPs were tested in cell lines and in GBM orthotopic mouse model with and without TMZ treatment. Results: AKB silencing, cytotoxicity and cell cycle arrest by these LfNPs were shown to be effective on GL261 cells. Tumor growth was significantly lower in AKB–LfNPs alone and in combination with TMZ treated mice and increased the survival by 2.5-times. Conclusion: Treatment of AKB–LfNPs to GBM mice improves life expectancy and has potential to combine with conventional chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.