We describe the development and application of a novel carbon nanotube/poly(methyl methacrylate) (CNT/PMMA) composite electrode as a sensitive amperometric detector of microchip capillary electrophoresis (CE). The composite electrode was fabricated by the in situ polymerization of a mixture of CNTs and prepolymerized methyl methacrylate in the microchannel of a piece of fused silica capillary under heat. The performance of this unique system was demonstrated by the separation and detection of phenolic pollutants and purines. The new CNT-based CE detector offered significantly lower operating potentials, yielded substantially enhanced signal-to-noise characteristics, and exhibited resistance to surface fouling and, hence, enhanced stability. Long-term stability and reproducibility with relative standard deviations of less than 5 % for the peak current (n=20) were also demonstrated. The simplicity and significant performance exhibited by the CNT/PMMA composite electrode indicate great promise for conventional CE, flowing-injection analysis, and other microfluidic analysis systems.
An optical probe based on colorimetric and ratiometric as well as chemiluminometric signal outputs is developed for the specific detection of hydrazine. On the basis of a Gabriel-type reaction, hydrazinolysis of a simple probe CF (4-phtalamide-N-(4'-methylcoumarin) naphthalimide) produces both the fluorescence of 7-amino-4-methylcoumarin with the max emission wavelength changed from 480 to 420 nm (along with a color change from yellow to transparent) and the luminol chemiluminescence activated by H2O2 with a max emission wavelength at 450 nm. The experimental detection limit of hydrazine is 3.2 ppb (0.1 μM). Selectivity experiments proved CF has excellent selectivity to hydrazine over other interfering substances. Probe CF was also successfully applied in the vapor hydrazine detection over other interfering volatile analytes. Furthermore, the probe CF loaded thin-layer chromatography (TLC) plate for vapor hydrazine detection limit is 5.4 mg/m(3) which is well below the half lethal dose of hydrazine gas for mice (LC50(mice), 330 mg/m(3)) and National Institute of Occupational Safety and Health's immediately dangerous to life or health limit (NIOSHIDLH, 66 mg/m(3)). With H2O2, only hydrazinolysis product luminol can be lighted at 450 nm, other species have no signal. Probe CF can also be used for the detection of hydrazine in HeLa cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.