Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, remains a major problem in non-small cell lung cancer (NSCLC) treatment. Increased activation of AXL has been identified as a novel mechanism for acquired resistance to EGFR-TKIs in NSCLC treatment. However, the cause of uncontrolled AXL expression is not fully understood. Here, we first demonstrate that AXL is overexpressed in an acquired gefitinib-resistant cell line (H292-Gef) as a result of slow turnover and that AXL is degraded by presenilin-dependent regulated intramembrane proteolysis (PS-RIP). Based on the findings, we attempted to enhance AXL degradation to overcome acquired gefitinib-resistance by the treatment of gefitinib-resistant NSCLC cells with yuanhuadine (YD), a potent antitumor agent in NSCLC. Treatment with YD effectively suppressed the cancer cell survival in vitro and in vivo. Mechanistically, YD accelerated the turnover of AXL by PS-RIP and resulted in the down-regulation of the full-length AXL. Therefore, the modulation of the proteolytic process through degradation of overexpressed AXL may be an attractive therapeutic strategy for the treatment of NSCLC and EGFR-TKI-resistant NSCLC.
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are used clinically as target therapies for lung cancer patients, but the occurrence of acquired drug resistance limits their efficacy. Nicotinamide N-methyltransferase (NNMT), a cancer-associated metabolic enzyme, is commonly overexpressed in various human tumors. Emerging evidence also suggests a crucial loss of function of microRNAs (miRNAs) in modulating tumor progression in response to standard therapies. However, their precise roles in regulating the development of drug-resistant tumorigenesis are still poorly understood. Herein, we established EGFR-TKI-resistant non-small-cell lung cancer (NSCLC) models and observed a negative correlation between the expression levels of NNMT and miR-449a in tumor cells. Additionally, knockdown of NNMT suppressed p-Akt and tumorigenesis, while re-expression of miR-449a induced phosphatase and tensin homolog (PTEN), and inhibited tumor growth. Furthermore, yuanhuadine, an antitumor agent, significantly upregulated miR-449a levels while critically suppressing NNMT expression. These findings suggest a novel therapeutic approach for overcoming EGFR-TKI resistance to NSCLC treatment.
The Hsp90 facilitates proper folding of signaling proteins associated with cancer progression, gaining attention as a target for therapeutic intervention.
The increased treatment of metastatic castration-resistant prostate cancer (mCRPC) with second-generation antiandrogen therapies (ADT) has coincided with a greater incidence of lethal, aggressive variant prostate cancer (AVPC) tumors that have lost dependence on androgen receptor (AR) signaling. These ARindependent tumors may also transdifferentiate to express neuroendocrine lineage markers and are termed neuroendocrine prostate cancer (NEPC). Recent evidence suggests kinase signaling may be an important driver of NEPC. To identify targetable kinases in NEPC, we performed global phosphoproteomics comparing several AR-independent to AR-dependent prostate cancer cell lines and identified multiple altered signaling pathways, including enrichment of RET kinase activity in the AR-independent cell lines. Clinical NEPC patient samples and NEPC patient-derived xenografts displayed upregulated RET transcript and RET pathway activity. Genetic knockdown or pharmacologic inhibition of RET kinase in multiple mouse and human models of NEPC dramatically reduced tumor growth and decreased cell viability. Our results suggest that targeting RET in NEPC tumors with high RET expression could be an effective treatment option. Currently, there are limited treatment options for patients with aggressive neuroendocrine prostate cancer and none are curative. Implications: Identification of aberrantly expressed RET kinase as a driver of tumor growth in multiple models of NEPC provides a significant rationale for testing the clinical application of RET inhibitors in patients with AVPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.