Atherosclerosis is a chronic disease characterized by the accumulation of lipids and fibrous elements in the large arteries, which is the principal cause of coronary artery disease. Dysregulated exosomal microRNA (miRNA) levels in serum have been identified in patients with various diseases, including CAD. In the present study, nine candidate miRNAs were detected in the plasma exosome from 42 patients with coronary atherosclerosis, and a higher expression of miR-30e and miR-92a was identified in patients. Following bioinformatics analysis and confirmation through immunoblotting, it was demonstrated that ATP binding cassette (ABC)A1 is a direct target of miR-30e, and miR-92a. Furthermore, a negative correlation was identified between plasma miR-30e and ABCA1, or miR-30e and cholesterol. Thus, the results of the present study suggest that the miR-30e level in exosomes from serum may have the potential to be a novel diagnostic biomarker for coronary atherosclerosis.
Cu2O exhibits excellent adsorption performance for the removal of I− anions from solutions by doping of metallic Ag or Cu. However, the adsorption process only appears on the surface of adsorbents. To further improve the utilization efficiencies of Cu content of adsorbents in the uptake process of I− anions, hollow spheres of metallic Cu, Cu/Cu2O composite and pure Cu2O were prepared by a facile solvothermal method. Samples were characterized and employed for the uptake of I− anions under various experimental conditions. The results show that Cu content can be tuned by adjusting reaction time. After the core was hollowed out, the uptake capacity of the samples increased sharply, and was proportional to the Cu content. Moreover, the optimal uptake was reached within only few hours. Furthermore, the uptake mechanism is proposed by characterization and analysis of the composites after uptake. Cu-based adsorbents have higher uptake performance when solutions are exposed to air, which further verified the proposed uptake mechanism. Finally, hollow Cu-based adsorbents exhibit excellent selectivity for I− anions in the presence of large concentrations of competitive anions, such as Cl−, SO42− and NO3−, and function well in an acidic or neutral environment. Therefore, this study is expected to promote the development of Cu-based adsorbents into a highly efficient adsorbent for the removal of iodide from solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.