Transcriptomes are useful both for species-tree inference and for uncovering evolutionary complexity within lineages. Through analyses of gene-tree conflict and multiple methods of species-tree inference, we demonstrate that phylogenomic data can provide unparalleled insight into the evolutionary history of Caryophyllales. We also discuss a method for overcoming computational challenges associated with homolog clustering in large data sets.
The hallmark of game-based learning
is that students discover concepts
through trial and error as they play. With the digital landscape in
higher education shifting to mobile-first, new tools for learning
chemistry are both possible and needed. Interactive games for chemistry
bring intuitive content directly to students through their devices.
The game Chairs! was created to teach the ring flip of cyclohexane.
The development of this new mobile learning tool for organic chemistry
and its implementation in classrooms are described.
Specific-pathogen-free (SPF) mice have improved hematopoietic characteristics relative to germ-free mice, however, it is not clear whether improvements in hematopoietic traits will continue when the level of microorganism exposure is further increased. We co-housed SPF C57BL/6 mice in a conventional facility (CVT) and found a significant increase in gut microbiota diversity along with increased levels of myeloid cells and T cells, especially effector memory T cells. Through single cell RNA sequencing of sorted KL (c-Kit+Lin−) cells, we imputed a decline in long-term hematopoietic stem cells and an increase in granulocyte-monocyte progenitors in CVT mice with up-regulation of genes associated with cell survival. Bone marrow transplantation through competitive repopulation revealed a significant increase in KSL (c-Kit+Sca-1+Lin−) cell reconstitution in recipients of CVT donor cells which occurred when donors were co-housed for both one and twelve months. However, there was minimal to no gain in mature blood cell engraftment in recipients of CVT donor cells relative to those receiving SPF donor cells. We conclude that co-housing SPF mice with mice born in a conventional facility increased gut microbiota diversity, augmented myeloid cell production and T cell activation, stimulated KSL cell reconstitution, and altered hematopoietic gene expression.
Microbes participate in ecological communities, much like multicellular organisms. However, microbial communities lack the centuries of observation and theory describing and predicting ecological processes available for multicellular organisms. Here, we examine early bacterial community assembly in the water-filled internodes of Amazonian bamboos from the genus
Guadua
. Bamboo stands form distinct habitat patches within the lowland Amazonian rainforest and provide habitat for a suite of vertebrate and invertebrate species.
Guadua
bamboos develop sealed, water-filled internodes as they grow. Internodes are presumed sterile or near sterile while closed, but most are eventually opened to the environment by animals, after which they are colonized by microbes. We find that microbial community diversity increases sharply over the first few days of environmental exposure, and taxonomic identity of the microbes changes through this time period as is predicted for early community assembly in macroscopic communities. Microbial community taxonomic turnover is consistent at the bacteria phylum level, but at the level of Operational Taxonomic Units (OTUs), internode communities become increasingly differentiated through time. We argue that these tropical bamboos form an ideal study system for microbial community ecology due to their near-sterile condition prior to opening, relatively consistent environment after opening, and functionally limitless possibilities for replicates. Given the possible importance of opened internode habitats as locations of transmission for both pathogenic and beneficial microbes among animals, understanding the microbial dynamics of the internode habitat is a key conservation concern for the insect and amphibian species that use this microhabitat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.