Brilliant green is a synthetic and toxic dye that is currently being utilized for various purposes, such as dying paper, leather, wool, and silk. The present study demonstrates the activated carbon preparation from waste banana peels as well as its usefulness to remove cationic dye brilliant green from aqueous medium. The dye removal was examined under a set of diverse conditions. The obtained results indicate that dye adsorption was maximum after 60 min of contact time. The removal of brilliant green dye enhances due to a rise in adsorbent dosage and becomes quantitative at 15 min of adsorbent dose. At a pH of 2, the uptake of dye by adsorbent was maximum, which decreases with the rise in pH. Langmuir isotherm was slightly better fitted than Freundlich model at varying temperatures. The experimental value of adsorption capacity was > 900 mg/g, which was observed quite close with pseudo-second-order model for brilliant green adsorption on the prepared adsorbent based on banana peel. Thermodynamic studies suggested exothermic, spontaneous, and favorable adsorption process for brilliant green dye. The adsorbent prepared in the present study can be incorporated for the treatment of wastewater contaminated with brilliant green as well as other toxic pollutants.
With the advancement of technology and a global shift towards clean energy, the need for rare earth metals is increasing. Scandium, a rare earth metal, has been extensively used over the decades in solid oxide fuel cells and aluminum–scandium alloys that have a vast, evolving market in aerospace, automobiles and 3D printing. However, the market struggles to maintain the supply chain due to expensive production processes and the absence of uniform global distribution of primary sources. Therefore, identification of alternative sources and technological advancements for scandium recovery are needed. To this end, an effort has been made to provide a review of the advances in different technologies applied in scandium recovery from diverse sources. Emphasis has been given to the improvements and upgrades to technologies in terms of environmental impact and recovery efficacy. An attempt has been made to discuss and deliver a clear representation of the challenges associated with every source for scandium recovery and the major developments in solving them. The environmental impact of scandium recovery and recycling has also been discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.