Production of the industrial chemical propylene oxide is energy-intensive and environmentally unfriendly. Catalysts based on bulk silver surfaces with direct propylene epoxidation by molecular oxygen have not resolved these problems because of substantial formation of carbon dioxide. We found that unpromoted, size-selected Ag3 clusters and approximately 3.5-nanometer Ag nanoparticles on alumina supports can catalyze this reaction with only a negligible amount of carbon dioxide formation and with high activity at low temperatures. Density functional calculations show that, relative to extended silver surfaces, oxidized silver trimers are more active and selective for epoxidation because of the open-shell nature of their electronic structure. The results suggest that new architectures based on ultrasmall silver particles may provide highly efficient catalysts for propylene epoxidation.
Hematite photoanodes were coated with an ultrathin cobalt oxide layer by atomic layer deposition (ALD). The optimal coating-1 ALD cycle, which amounts to <1 monolayer of Co(OH)2/Co3O4-resulted in significantly enhanced photoelectrochemical water oxidation performance. A stable, 100-200 mV cathodic shift in the photocurrent onset potential was observed that is correlated to an order of magnitude reduction in the resistance to charge transfer at the Fe2O3/H2O interface. Furthermore, the optical transparency of the ultrathin Co(OH)2/Co3O4 coating establishes it as a particularly advantageous treatment for nanostructured water oxidation photoanodes. The photocurrent of catalyst-coated nanostructured inverse opal scaffold hematite photoanodes reached 0.81 and 2.1 mA/cm(2) at 1.23 and 1.53 V, respectively.
Epoxidation made easy: Subnanometer gold clusters immobilized on amorphous alumina result in a highly active and selective catalyst for propene epoxidation. The highest selectivity is found for gas mixtures involving oxygen and water, thus avoiding the use of hydrogen. Ab initio DFT calculations are used to identify key reaction intermediates and reaction pathways. The results confirm the high catalyst activity owing to the formation of propene oxide metallacycles. Al green, Au yellow, O red, and C gray.
The relationship between molecular architecture and the nature of interactions with lipid bilayers has been studied for a series of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers using small-angle X-ray scattering (SAXS) and thermal analysis (differential scanning calorimetry, DSC). The number of molecular repeat units in the hydrophobic poly(propylene oxide), PPO, block has been found to be a critical determinant of the nature of triblock copolymer-lipid bilayer association. For dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-based biomembrane structures, polymers possessing a PPO chain length commensurate with the acyl chain dimensions of the lipid bilayer yield highly ordered, swollen lamellar structures consistent with well-integrated (into the lipid bilayer) PPO blocks. Triblock copolymers of lesser PPO chain length yield materials with structural characteristics similar to a simple dispersion of DMPC in water. Increasing the concentration (from 4 to 12 mol %) of well-integrated triblock copolymers enhances the structural ordering of the lamellar phase, while concentrations exceeding 16 mol % result in the formation of a hexagonal phase. Examination of temperature-induced changes in the structure of these mesophases (complex fluids) reveals that if the temperature is reduced sufficiently, all compositions exclude polymer and thus exhibit the characteristic SAXS pattern for hydrated DMPC bilayers. Increasing the temperature promotes better insertion of the polymers possessing PPO chain lengths sufficient for membrane insertion. No temperature-induced structural changes are observed in compositions prepared with PEO-PPO-PEO polymers that feature PPO length insufficient to permit full incorporation into the lipid bilayer.
Size-selected
Cu
n
catalysts (n = 3,
4, 20) were synthesized on Al2O3 thin films
using mass-selected cluster deposition. A systematic
study of size and support effects was carried out for CO2 hydrogenation at atmospheric pressure using a combination of in
situ grazing incidence X-ray absorption spectroscopy, catalytic activity
measurement, and first-principles calculations. The catalytic activity
for methanol synthesis is found to strongly vary as a function of
the cluster size; the Cu4/Al2O3 catalyst
shows the highest turnover rate for CH3OH production. With
only one atom less than Cu4, Cu3 showed less
than 50% activity. Density functional theory calculations predict
that the activities of the gas-phase Cu clusters increase as the cluster
size decreases; however, the stronger charge transfer interaction
with Al2O3 support for Cu3 than for
Cu4 leads to remarkably reduced binding strength between
the adsorbed intermediates and supported Cu3, which subsequently
results in a less favorable energetic pathway to transform carbon
dioxide to methanol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.