A galloping-based energy harvester, which is surrounded by structure(s) such as an enclosure, has an aerodynamic force change due to a change in flow caused by movement of the bluff body against the structure(s). Therefore, any model derived without considering this effect cannot predict the harvester’s behavioral or energetic characteristics accurately. The main goal of this study was to develop a model that could be used to accurately simulate a galloping-based energy harvester surrounded by an enclosure. To consider the effect of the enclosure on the aerodynamic force applied to the bluff body, a bivariate quasi-static aerodynamic force model was newly proposed, which was accomplished by performing an experiment involving two variables, the attack angle, and the distance from the nearest wall of the bluff body. A set of governing nonlinear field equations reflecting this force model were derived, and their perturbed solutions were obtained and validated by comparison with experimental results. The effect of the enclosure on the performance of the present energy harvester system was investigated and discussed using both theoretical and experimental methods.
The feasibility of fabrication of shape memory polymers (SMPs) was investigated using a customized 3-dimensional (3D) printing technique with an excellent resolution that could be less than 100 microns. The thermorheological effects of SMPs were adjusted by contact and non-contact triggering, which led to the respective excellent shape recoveries of 100% and 99.89%. Thermogravimetric analyses of SMPs resulted in a minor weight loss, thereby revealing good thermal stability at higher temperatures. The viscoelastic properties of SMPs were measured using dynamic mechanical analyses, exhibiting increased viscous and elastic characteristics. Mechanical strength, thermal stability and viscoelastic properties, of the two SMPs were compared [di(ethylene) glycol dimethacrylate (DEGDMA) and poly (ethylene glycol) dimethacrylate (PEGDMA)] to investigate the shape memory behavior. This novel 3D printing technique can be used as a promising method for fabricating smart materials with increased accuracy in a cost-effective manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.