Calvarial bone is formed by the intramembranous bone-forming process, which involves many signaling molecules. The constitutive activation of the fibroblast growth factor (FGF) signaling pathway accelerates osteoblast differentiation and results in premature cranial suture closure. Bone morphogenetic protein (BMP) signaling pathways, which involve the downstream transcription factors Dlx5 and Msx2, are also involved in the bone-forming processes. However, the relationships between these two main signaling cascades are still unclear. We found that FGF2 treatment of developing bone fronts stimulated Bmp2 gene expression but that BMP2 treatment could not induce Fgf2 expression. Moreover, the disruption of the Runx2 gene completely eliminated the expression of Bmp2 and its downstream genes Dlx5 and Msx2 in the developing primordium of bone, while the expression of Fgf2 was maintained. In addition, cultured Runx2؊/؊ cells expressed very low baseline levels of Bmp2 that were up-regulated by transfection with a Runx2-expressing plasmid. These levels in turn were markedly elevated by FGF2 treatment. FGF2 treatment also strongly enhanced the Bmp2 expression in MC3T3-E1 cells, whose endogenous Runx2 gene is intact and which express Bmp2 at low baseline levels as well. These results indicate that Runx2 is an important mediator of the expression of Bmp2 in response to FGF stimulation in cranial bone development.
Runx2 (previously known as Cbfa1/Pebp2␣A/AML3), a key transcription factor in osteoblast differentiation, has at least two different isoforms using alternative promoters, which suggests that the isoforms might be expressed differentially. Haploinsufficiency of the Runx2 gene is associated with cleidocranial dysplasia (CCD), the main phenotype of which is inadequate development of calvaria. In spite of the biological relevance, Runx2 gene expression patterns in developing calvaria has not been explored previously, and toward this aim we developed three probes: pRunx2, which comprises the common coding sequence of Runx2 and hybridizes with all isoforms; pPebp2␣A, which specifically hybridizes with the isoform transcribed with the proximal promoter; and pOsf2, which hybridizes with the isoform transcribed with the distal promoter. These probes were hybridized with tissue sections of mouse calvaria taken at various time points in development. Runx2 expression was localized to the critical area of cranial suture closure, being found in parietal bones, osteogenic fronts, and sutural mesenchyme. Pebp2␣A and Osf2 showed tissue-specific expression patterns. The sites of Pebp2␣A expression were almost identical to that of pRunx2 hybridization but expression was most intense in the sutural mesenchyme, where undifferentiated mesenchymal cells reside. The Osf2 isoform was strongly expressed in the osteogenic fronts, as well as in developing parietal bones, where osteopontin (OP) and osteocalcin (OC) also were expressed. However, in contrast to Pebp2␣A, Osf2 expression did not occur in sutural mesenchyme. Pebp2␣A also was expressed prominently in primordial cartilage that is found under the sutural mesenchyme and is not destined to be mineralized. Thus, Osf2 isoforms contribute to events later in osteoblast differentiation whereas the Pebp2␣A isoform participates in a wide variety of cellular activities ranging from early stages of osteoblast differentiation to the final differentiation of osteoblasts. (
Cranial sutures are important growth sites of the skull. During suture closure, the dura mater is one of the most important sources of various positive and negative regulatory signals. Previous results indicate that TGF-beta2 from dura mater strongly accelerates suture closure, however, its exact regulatory mechanism is still unclear. In this study, we confirmed that removal of dura mater in calvarial organ culture strongly accelerates sagittal suture closure and that this effect is further enhanced by TGF-beta2 treatment. TGF-beta2 stimulated cell proliferation in the MC3T3-E1 cell line. Similarly, it stimulated the proliferation of cells in the sutural space in calvarial organ culture. Furthermore, TGF-beta2-mediated enhanced cell proliferation and suture closure were almost completely inhibited by an Erk-MAPK blocker, PD98059. These results indicate that TGF-beta2-induced activation of Erk-MAPK is an important signaling component that stimulates cell proliferation to enrich osteoprogenitor cells, thereby promoting their differentiation into osteoblasts to achieve a rapid calvarial bone expansion.
This study analyzed the longevity of preformed metal crowns (PMCs) in first permanent molars and evaluated factors influencing their survival during a long-term follow-up period. In all, 115 first permanent molars treated with PMCs between June 2008 and June 2018 were retrospectively analyzed. The overall combined success rate for the study group was 84.3%. The 5-year survival rate was 82.8%. Multivariate Cox regression analyses identified distal cavities and mandibular PMC placement as risk factors for restoration failure. Careful placement of PMCs at the final try-in stage augments the longevity of the crown.
Mesiodens is defined as a supernumerary tooth in the premaxillary region. It can cause several clinical manifestations in normal eruption and position of adjacent teeth, such as displacement and impaction. Although the mesiodens accompanied by a clinical complication is indicated for removal, the optimal time of mesiodens removal is still controversial. Some authors suggest immediate intervention defining the removal of mesiodens as soon as possible after the first detection. On the other hand, others recommend delayed intervention which denotes the removal of mesiodens after complete root development of adjacent teeth. This case report is presented with three cases of spontaneous correction and proper alignment of rotated maxillary central incisors by extraction of mesiodens when the crowns of rotated incisors were completely formed while the roots of them were at an early developmental stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.