We present a discrete particle based method capable of creating very realistic animations of bubbles in fluids. It allows for the generation (nucleation) of bubbles from gas dissolved in the fluid, the motion of the discrete bubbles including bubble collisions and drag interactions with the liquid which could be undergoing complex free surface motion, the formation and motion of coupled foams and the final dissipation of bubbles. This allows comprehensive simulations of dynamic bubble behavior. The underlying fluid simulation is based on the mesh-free Smoothed Particle Hydrodynamics method. Each particle representing the liquid contains an amount of dissolved gas. Gas is transferred from the continuum fluid model to the discrete bubble model at nucleation sites on the surface of solid bodies. The rate of gas transport to the nucleation sites controls the rate of bubble generation, producing very natural time variations in bubble numbers. Rising bubbles also grow by gathering more gas from the surrounding liquid as they move. This model contains significant bubble scale physics and allows, in principle, the capturing of many important processes that cannot be directly modeled by traditional methods. The method is used here to realistically animate the pouring of a glass of beer, starting with a stream of fresh beer entering the glass, the formation of a dense cloud of bubbles, which rise to create a good head as the beer reaches the top of the glass.
We present a discrete particle based method capable of creating very realistic animations of bubbles in fluids. It allows for the generation (nucleation) of bubbles from gas dissolved in the fluid, the motion of the discrete bubbles including bubble collisions and drag interactions with the liquid which could be undergoing complex free surface motion, the formation and motion of coupled foams and the final dissipation of bubbles. This allows comprehensive simulations of dynamic bubble behavior. The underlying fluid simulation is based on the mesh-free Smoothed Particle Hydrodynamics method. Each particle representing the liquid contains an amount of dissolved gas. Gas is transferred from the continuum fluid model to the discrete bubble model at nucleation sites on the surface of solid bodies. The rate of gas transport to the nucleation sites controls the rate of bubble generation, producing very natural time variations in bubble numbers. Rising bubbles also grow by gathering more gas from the surrounding liquid as they move. This model contains significant bubble scale physics and allows, in principle, the capturing of many important processes that cannot be directly modeled by traditional methods. The method is used here to realistically animate the pouring of a glass of beer, starting with a stream of fresh beer entering the glass, the formation of a dense cloud of bubbles, which rise to create a good head as the beer reaches the top of the glass.
We present a discrete particle based method capable of creating very realistic animations of bubbles in fluids. It allows for the generation (nucleation) of bubbles from gas dissolved in the fluid, the motion of the discrete bubbles including bubble collisions and drag interactions with the liquid which could be undergoing complex free surface motion, the formation and motion of coupled foams and the final dissipation of bubbles. This allows comprehensive simulations of dynamic bubble behavior. The underlying fluid simulation is based on the mesh-free Smoothed Particle Hydrodynamics method. Each particle representing the liquid contains an amount of dissolved gas. Gas is transferred from the continuum fluid model to the discrete bubble model at nucleation sites on the surface of solid bodies. The rate of gas transport to the nucleation sites controls the rate of bubble generation, producing very natural time variations in bubble numbers. Rising bubbles also grow by gathering more gas from the surrounding liquid as they move. This model contains significant bubble scale physics and allows, in principle, the capturing of many important processes that cannot be directly modeled by traditional methods. The method is used here to realistically animate the pouring of a glass of beer, starting with a stream of fresh beer entering the glass, the formation of a dense cloud of bubbles, which rise to create a good head as the beer reaches the top of the glass.
Recent advances in computing hardware have enabled the application of physically based simulation techniques to various research fields for improved accuracy. In this paper, we present a novel physically based nonrigid registration method using smoothed particle hydrodynamics for hepatic metastasis volume-preserving registration between follow-up liver CT images. Our method models the liver and hepatic metastasis as a set of particles carrying their own physical properties. Based on the fact that the hepatic metastasis is stiffer than other normal cells in the liver parenchyma, the candidate regions of hepatic metastasis are modeled with particles of higher stiffness compared to the liver parenchyma. Particles placed in the liver and candidate regions of hepatic metastasis in the source image are transformed along a gradient vector flow-based force field calculated in the target image. In this transformation, the particles are physically interacted and deformed by a novel deformable particle method which is proposed to preserve the hepatic metastasis to the best. In experimental results using ten clinical datasets, our method matches the liver effectively between follow-up CT images as well as preserves the volume of hepatic metastasis almost completely, enabling the accurate assessment of the volume change of the hepatic metastasis. These results demonstrated a potential of the proposed method that it can deliver a substantial aid in measuring the size change of index lesion (i.e., hepatic metastasis) after the chemotheraphy of metastasis patients in radiation oncology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.