Radiation dose monitoring in medical imaging examination areas is mandatory for the reduction of patient radiation exposure. Recently, dose monitoring techniques that use digital imaging and communications in medicine (DICOM) dose structured reports (SR) have been introduced. The present paper discusses the setup of a radiation dose monitoring system based on DICOM data from university hospitals in Korea. This system utilizes the radiation dose data-archiving method of standard DICOM dose SR combined with a DICOM modality performed procedure step (MPPS). The analysis of dose data based on a method utilizing DICOM tag information is proposed herein. This method supports the display of dose data from non-dosimeter-attached X-ray equipment. This system tracks data from 62 pieces of equipment to analyze digital radiographic, mammographic, mobile radiographic, CT, PET-CT, angiographic, and fluorographic modalities.
Background: In 2021, the Korean government proposed a new CT diagnostic reference level. This study performed a nationwide survey and developed new DRLs and AD for 13 common CT examinations. We compared other countries’ DRLs for CT examinations. Methods: This study investigated the CTDIvol and DLP of the 12 types of CT protocols for adults and brain CT protocol for pediatrics. A total of 7829 CT examinations were performed using 225 scanners. We defined the DRLs values in the distribution of radiation exposure levels to determine the nationwide patient dose and distribution status of the dose. Results: This study showed that the new Korean national CT DRLs are slightly higher or similar to those of previous surveys and are similar or lower than those of other countries. In some protocols, although the DLP value increased, the CTDIvol decreased; therefore, it can be concluded that the patient’s dose in CT examinations was well managed. Conclusions: The new CT DRLs were slightly higher than or similar to that of the previous survey and were evaluated to be similar or lower than CT DRLs of other countries. These DRLs will be used for radiation optimization and effective dose calculation for an individual.
Digital cardiovascular angiography accounts for a major portion of the radiation dose among the examinations performed at cardiovascular centres. However, dose-related information is neither monitored nor recorded systemically. This report concerns the construction of a radiation dose monitoring system based on digital imaging and communications in medicine (DICOM) data and its use at the cardiovascular centre of the University Hospitals in Korea. The dose information was analysed according to DICOM standards for a series of procedures, and the formulation of diagnostic reference levels (DRLs) at our cardiovascular centre represents the first of its kind in Korea. We determined a dose area product J Digit Imaging (2015) 28:684-694 DOI 10.1007 (DAP) DRL for coronary angiography of 75.6 Gy cm 2 and a fluoroscopic time DRL of 318.0 s. The DAP DRL for percutaneous transluminal coronary intervention was 213.3 Gy cm 2 , and the DRL for fluoroscopic time was 1207.5 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.