Heatwaves have increased in intensity, frequency and duration, with these trends projected to worsen under enhanced global warming. Understanding regional heatwave trends has critical implications for the biophysical and human systems they impact. Until now a comprehensive assessment of regional observed changes was hindered by the range of metrics employed, underpinning datasets, and time periods examined. Here, using the Berkeley Earth temperature dataset and key heatwave metrics, we systematically examine regional and global observed heatwave trends. In almost all regions, heatwave frequency demonstrates the most rapid and significant change. A measure of cumulative heat shows significant increases almost everywhere since the 1950s, mainly driven by heatwave days. Trends in heatwave frequency, duration and cumulative heat have accelerated since the 1950s, and due to the high influence of variability we recommend regional trends are assessed over multiple decades. Our results provide comparable regional observed heatwave trends, on spatial and temporal scales necessary for understanding impacts.
Determining the time of emergence of climates altered from their natural state by anthropogenic influences can help inform the development of adaptation and mitigation strategies to climate change. Previous studies have examined the time of emergence of climate averages. However, at the global scale, the emergence of changes in extreme events, which have the greatest societal impacts, has not been investigated before. Based on state-of-the-art climate models, we show that temperature extremes generally emerge slightly later from their quasi-natural climate state than seasonal means, due to greater variability in extremes. Nevertheless, according to model evidence, both hot and cold extremes have already emerged across many areas. Remarkably, even precipitation extremes that have very large variability are projected to emerge in the coming decades in Northern Hemisphere winters associated with a wettening trend. Based on our findings we expect local temperature and precipitation extremes to already differ significantly from their previous quasi-natural state at many locations or to do so in the near future. Our findings have implications for climate impacts and detection and attribution studies assessing observed changes in regional climate extremes by showing whether they will likely find a fingerprint of anthropogenic climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.