The Drosophila (fruit fly) model system has been instrumental in our current understanding of human biology, development, and diseases. Here, we used a high-throughput yeast two-hybrid (Y2H)-based technology to screen 102 bait proteins from Drosophila melanogaster, most of them orthologous to human cancer-related and/or signaling proteins, against high-complexity fly cDNA libraries. More than 2300 protein-protein interactions (PPI) were identified, of which 710 are of high confidence. The computation of a reliability score for each protein-protein interaction and the systematic identification of the interacting domain combined with a prediction of structural/functional motifs allow the elaboration of known complexes and the identification of new ones.
The prevalence of alternative splicing as a target for alterations leading to human genetic disorders makes it highly relevant for therapy. Here we have used in vitro splicing reactions with different splicing reporter constructs to screen 4,000 chemical compounds for their ability to selectively inhibit spliceosome assembly and splicing. We discovered indole derivatives as potent inhibitors of the splicing reaction. Importantly, compounds of this family specifically inhibit exonic splicing enhancer (ESE)-dependent splicing, because they interact directly and selectively with members of the serine-arginine-rich protein family. Treatment of cells expressing reporter constructs with ESE sequences demonstrated that selected indole derivatives mediate inhibition of ESE usage in vivo and prevent early splicing events required for HIV replication. This discovery opens the exciting possibility of a causal pharmacological treatment of aberrant splicing in human genetic disorders and development of new antiviral therapeutic approaches.splicing correction ͉ exonic splicing enhancer ͉ small chemicals ͉ pathologic splicing R emoval of introns from newly transcribed RNA polymerase II precursors (pre-mRNA) during splicing not only is an essential step for the expression of most genes in higher eukaryotic cells but also constitutes an important mechanism for generation of protein diversity and regulation of gene expression (1, 2). It is estimated that Ͼ70% of human genes are subjected to alternative splicing, and it is not surprising that many point mutations causing human diseases are associated with aberrant splicing (3, 4).Current models of constitutive and a fortiori alternative splicing suggest that splice site recognition is strongly modulated by the interaction of specific exonic and intronic pre-mRNA sequences with at least two classes of nonspliceosomal nuclear RNA-binding proteins: serine-arginine-rich (SR) proteins (5-7) and heterogeneous nuclear ribonucleoproteins (8-10). These proteins interact with spliceosomal components (5-7) and either activate or prevent the use of degenerate splice sites in their vicinity. Thus, binding of SR proteins to exonic splicing enhancers (ESE) through their RNA-recognition motif (RRM) promotes exon definition by recruiting constitutive factors via protein-protein interactions mediated by their arginine-serine-rich (RS) domain and prevents the action of nearby splicing silencers (4, 6, 11).Mutations causing human diseases may affect splice sites as well as regulatory sequences leading to the production of defective proteins (4, 11). Thus, targeting either the mutated sequences or the factors that bind them may prove to be a valuable strategy to correct aberrant splicing. Recently, antisense strategies targeting ESEdependent mechanisms have been used to induce skipping of exons containing nonsense mutations or, conversely, to restore exon inclusion by synthetic exon-specific effectors (bifunctional antisense peptide molecules or tailed antisense oligonucleotides) or spliceosome-mediat...
The development of multidrug-resistant viruses compromises antiretroviral therapy efficacy and limits therapeutic options. Therefore, it is an ongoing task to identify new targets for antiretroviral therapy and to develop new drugs. Here, we show that an indole derivative (IDC16) that interferes with exonic splicing enhancer activity of the SR protein splicing factor SF2/ASF suppresses the production of key viral proteins, thereby compromising subsequent synthesis of full-length HIV-1 pre-mRNA and assembly of infectious particles. IDC16 inhibits replication of macrophage- and T cell–tropic laboratory strains, clinical isolates, and strains with high-level resistance to inhibitors of viral protease and reverse transcriptase. Importantly, drug treatment of primary blood cells did not alter splicing profiles of endogenous genes involved in cell cycle transition and apoptosis. Thus, human splicing factors represent novel and promising drug targets for the development of antiretroviral therapies, particularly for the inhibition of multidrug-resistant viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.