The authors analyze the role transcription plays in regulating bacterial metabolic flux. Of 91 transcriptional regulators studied, 2/3 affect absolute fluxes, but only a small number of regulators control the partitioning of flux between different metabolic pathways.
Improving qualitative and quantitative characterization of monoclonal antibodies is essential, because of their increasing popularity as therapeutic drug targets. Electron transfer dissociation (ETD)-based top-down mass spectrometry (MS) is the method of choice for in-depth characterization of post-translationally modified large peptides, small- and medium-sized proteins, and noncovalent protein complexes. Here, we describe the performance of ETD-based top-down mass spectrometry for structural analysis of intact 150 kDa monoclonal antibodies, immunoglobulins G (IgGs). Simultaneous mass analysis of intact IgGs as well as a complex mixture of ETD product ions at sufficiently high resolution and mass accuracy in a wide m/z range became possible because of recent advances in state-of-the-art time-of-flight (TOF) mass spectrometry. High-resolution ETD TOF MS performed on IgG1-kappa from murine myeloma cells and human anti-Rhesus D IgG1 resulted in extensive sequence coverage of both light and heavy chains of IgGs and revealed information on their variable domains. Results are superior and complementary to those previously generated by collision-induced dissociation. However, numerous disulfide bonds drastically reduce the efficiency of top-down ETD fragmentation within the protected sequence regions, leaving glycosylation uncharacterized. Further increases in the experiment sensitivity and improvement of ion activation before and after ETD reaction are needed to target S-S bond-protected sequence regions and post-translational modifications.
Three synthesis lots of linear poly(ethyleneimine) (PEI) are compared to a fully hydrolyzed linear PEI (commercially available as PEI "Max") regarding structure, polyplex formation with plasmid DNA, and transfection of suspension-adapted HEK-293E cells. PEI "Max" binds DNA more efficiently than the other PEIs, but it is the least effective in terms of transient recombinant protein yield. One PEI lot is fractionated by means of SEC. The fractions of high-M(n) PEI are the most efficient for complex formation and transfection. Nevertheless, the highest transient recombinant protein yields are achieved with unfractionated PEI. The results demonstrate that the polydispersity and charge density of linear PEI are important parameters for gene delivery to suspension-adapted HEK-293E cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.