BACKGROUND Risk of transfusion‐transmitted (TT) malaria is mainly associated with whole blood (WB) or red blood cell (RBC) transfusion. Risk mitigation relies mostly on donor deferral while a limited number of countries perform blood testing, both negatively impacting blood availability. This study investigated the efficacy of the pathogen reduction system using amustaline and glutathione (GSH) to inactivate Plasmodium falciparum in WB. STUDY DESIGN AND METHODS WB units were spiked with ring stage P. falciparum infected RBCs. Parasite loads were measured in samples at time of infection, after 24 hours at room temperature (RT), and after a 24‐hour incubation at RT post‐treatment with 0.2 mM amustaline and 2 mM GSH. Serial 10‐fold dilutions of the samples were inoculated to RBC cultures and maintained up to 4 weeks. Parasitemia was quantified by cytometry. RESULTS The P. falciparum viability assay has a limit of detection of a single live parasite per sample. Input parasite titer was >5.7 log10 TCID50 per mL. A 24‐hour incubation at RT paused parasite development in controls, but they retained viability and infectivity when tested in culture. In contrast, no infectious parasites were detected in the amustaline/GSH‐treated sample after 4 weeks of culture. CONCLUSION A robust level of P. falciparum inactivation was achieved in WB using amustaline/GSH treatment. Parasite log reduction was >5.7 log10 TCID50 per mL. Development of such a pathogen reduction system may provide an opportunity to reduce the risk of TT malaria and improve blood availability.
Results of genotyping with true high-throughput capability for MNSs antigens are underrepresented, probably because of technical issues, due to the high level of nucleotide sequence homology of the paralogous genes GYPA, GYPB and GYPE. Eight MNSs-specific single nucleotide polymorphisms (SNP) were detected using matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry (MALDI-TOF MS) in 5800 serologically M/N and S/s pre-typed Swiss blood donors and 50 individuals of known or presumptive black African ethnicity. Comparison of serotype with genotype delivered concordance rates of 99·70% and 99·90% and accuracy of genotyping alone of 99·88% and 99·95%, for M/N and S/s, respectively. The area under the curve of peak signals was measured in intron 1 of the two highly homologous genes GYPB and GYPE and allowed for gene copy number variation estimates in all individuals investigated. Elevated GYPB:GYPE ratios accumulated in several carriers of two newly observed GYP*401 variants, termed type G and H, both encoding for the low incidence antigen St(a). In black Africans, reduced GYPB gene contents were proven in pre-typed S-s-U- phenotypes and could be reproduced in unknown specimens. Quantitative gene copy number estimates represented a highly attractive supplement to conventional genotyping, solely based on MNSs SNPs.
<b>Background: </b>High-frequency blood group antigens (HFA) are present in >90% of the human population, according to some reports even in >99% of individuals. Therefore, patients lacking HFA may become challenging for transfusion support because compatible blood is hardly found, and if the patient carries alloantibodies, the cross-match will be positive with virtual every red cell unit tested. <b>Methods: </b>In this study, we applied high-throughput blood group SNP genotyping on >37,000 Swiss blood donors, intending to identify homozygous carriers of low-frequency blood group antigens (LFA). <b>Results: </b>326 such individuals were identified and made available to transfusion specialists for future support of patients in need of rare blood products.<b> Conclusion: </b>Thorough comparison of minor allele frequencies using population genetics revealed heterogeneity of allele distributions among Swiss blood donors which may be explained by the topographical and cultural peculiarities of Switzerland. Moreover, geographically localized donor subpopulations are described which contain above-average numbers of individuals carrying rare blood group genotypes.
During the last few decades, efforts to increase the safety of blood and blood products have mainly focused on preventing the viral infections HCV, HIV, HBV and Treponema pallidum. The evolution of these approaches and the achieved increase in safety is shown for the last 25 years in Switzerland. In detail, the prevalences and incidences of the infection disease and the theoretical estimated residual risks (RR) of these blood-borne infections are presented. Prevalences, incidences and, in particular, the RR have decreased considerably over the last 25 years. This was achieved primarily by the adoption of strict criteria for the selection of blood donors, refined questionnaires, the introduction of increasingly sensitive serological screening tests and the implementation of nucleic acid testing (NAT) for these blood-borne pathogens. These NAT assays have significantly shortened the window period between infection and the first detection of the infectious agent in the blood of an infected individual. A form of “real life” comparison or confirmation is provided by the reported lookback procedures (LBP) and the haemovigilance data of the Swiss competent authority, Swissmedic. These data are in agreement, and thus support the very low prevalences, incidences and RR.
Adapting the INTERCEPT RBC PRT for WB The INTERCEPT PRT for RBC and WB uses amustaline (0Á2 mM) to irreversibly cross-link nucleic acids and glutathione (GSH) (20 mM for RBC and 2 mM for WB) to quench unreacted amustaline. Laboratory and clinical trial results for the RBC PRT form the basis for the WB PRT. Preliminary studies have demonstrated preservation of RBC quality in amustaline/GSH-treated WB. A Phase 1 safety trial in Côte d'Ivoire and development of a WB processing kit requiring limited electricity are described.Discussion Assessing the clinical safety of a WB PRT under local conditions is a positive step in the development of a suitable WB PRT for low-resource settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.