Iron is not only essential but also a toxic trace element. Under iron repletion, ferritin maintains cellular iron homeostasis by storing iron to avoid iron toxicity. Under iron depletion, the ferritin‐specific autophagy adaptor NCOA4 delivers ferritin to lysosomes via macroautophagy to enable cells to use stored iron. Here, we show that NCOA4 also plays crucial roles in the regulation of ferritin fate under iron repletion. NCOA4 forms insoluble condensates via multivalent interactions generated by the binding of iron to its intrinsically disordered region. This sequesters NCOA4 away from ferritin and allows ferritin accumulation in the early phase of iron repletion. Under prolonged iron repletion, NCOA4 condensates can deliver ferritin to lysosomes via a TAX1BP1‐dependent non‐canonical autophagy pathway, thereby preventing relative iron deficiency due to excessive iron storage and reduced iron uptake. Together, these observations suggest that the NCOA4‐ferritin axis modulates intracellular iron homeostasis in accordance with cellular iron availability.
Tissue absorbance, light scattering, and autofluorescence are significantly lower in the nearinfrared (NIR) range than in the visible range. Because of these advantages, NIR fluorescent proteins (FPs) are in high demand for in vivo imaging. Nevertheless, application of NIR FPs such as iRFP is still limited due to their dimness in mammalian cells. In contrast to GFP and its variants, iRFP requires biliverdin (BV) as a chromophore. The dimness of iRFP is at least partly due to rapid reduction of BV by biliverdin reductase-A (BLVRA). Here, we established biliverdin reductase-a knockout (Blvra-/-) mice to increase the intracellular BV concentration and, thereby, to enhance iRFP fluorescence intensity. As anticipated, iRFP fluorescence intensity was significantly increased in all examined tissues of Blvra-/-mice. Similarly, the genetically encoded calcium indicator NIR-GECO1, which is engineered based on another NIR FP, mIFP, exhibited a marked increase in fluorescence intensity in mouse embryonic fibroblasts derived from Blvra-/-mice. We expanded this approach to an NIR light-sensing optogenetic tool, the BphP1-PpsR2 system, which also requires BV as a chromophore. Again, deletion of the Blvra gene markedly enhanced the light response in HeLa cells. These results indicate that the Blvra-/-mouse is a versatile tool for the in vivo application of NIR FPs and NIR light-sensing optogenetic tools.
The ErbB-family receptors play pivotal roles in the proliferation, migration, and survival of epithelial cells. Because our knowledge on the ErbB-family receptors was obtained largely by the exogenous application of their ligands, it remains unknown to which extent each of the ErbB contributes to these outputs. We here knocked out each ErbB gene, various combinations of ErbB genes, or all in Madin-Darby canine kidney cells to delineate the contribution of each gene. ERK activation waves during collective cell migration were mediated primarily by ErbB1 and secondarily by the ErbB2/ErbB3 heterodimer. Either ErbB1 or the ErbB2/ErbB3 complex was sufficient for the G1/S progression. The saturation cell density was markedly reduced in cells deficient in all ErbB-proteins, but not cells retaining only ErbB2, which cannot bind to ligands. Thus, the ligand-independent ErbB2 activity is sufficient for preventing apoptosis at high cell density. In short, systematic knockout of ErbB-family genes delineated the roles of each ErbB receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.