Brain tumor is one of the most aggressive diseases nowadays, resulting in a very short life span if it is diagnosed at an advanced stage. The treatment planning phase is thus essential for enhancing the quality of life for patients. The use of Magnetic Resonance Imaging (MRI) in the diagnosis of brain tumors is extremely widespread, but the manual interpretation of large amounts of images requires considerable effort and is prone to human errors. Hence, an automated method is necessary to identify the most common brain tumors. Convolutional Neural Network (CNN) architectures are successful in image classification due to their high layer count, which enables them to conceive the features effectively on their own. The tuning of CNN hyperparameters is critical in every dataset since it has a significant impact on the efficiency of the training model. Given the high dimensionality and complexity of the data, manual hyperparameter tuning would take an inordinate amount of time, with the possibility of failing to identify the optimal hyperparameters. In this paper, we proposed a Bayesian Optimization-based efficient hyperparameter optimization technique for CNN. This method was evaluated by classifying 3064 T-1-weighted CE-MRI images into three types of brain tumors (Glioma, Meningioma, and Pituitary). Based on Transfer Learning, the performance of five well-recognized deep pre-trained models is compared with that of the optimized CNN. After using Bayesian Optimization, our CNN was able to attain 98.70% validation accuracy at best without data augmentation or cropping lesion techniques, while VGG16, VGG19, ResNet50, InceptionV3, and DenseNet201 achieved 97.08%, 96.43%, 89.29%, 92.86%, and 94.81% validation accuracy, respectively. Moreover, the proposed model outperforms state-of-the-art methods on the CE-MRI dataset, demonstrating the feasibility of automating hyperparameter optimization.
The process of diagnosing brain tumors is very complicated for many reasons, including the brain’s synaptic structure, size, and shape. Machine learning techniques are employed to help doctors to detect brain tumor and support their decisions. In recent years, deep learning techniques have made a great achievement in medical image analysis. This paper proposed a deep wavelet autoencoder model named “DWAE model”, employed to divide input data slice as a tumor (abnormal) or no tumor (normal). This article used a high pass filter to show the heterogeneity of the MRI images and their integration with the input images. A high median filter was utilized to merge slices. We improved the output slices’ quality through highlight edges and smoothened input MR brain images. Then, we applied the seed growing method based on 4-connected since the thresholding cluster equal pixels with input MR data. The segmented MR image slices provide two two-layer using the proposed deep wavelet auto-encoder model. We then used 200 hidden units in the first layer and 400 hidden units in the second layer. The softmax layer testing and training are performed for the identification of the MR image normal and abnormal. The contribution of the deep wavelet auto-encoder model is in the analysis of pixel pattern of MR brain image and the ability to detect and classify the tumor with high accuracy, short time, and low loss validation. To train and test the overall performance of the proposed model, we utilized 2500 MR brain images from BRATS2012, BRATS2013, BRATS2014, BRATS2015, 2015 challenge, and ISLES, which consists of normal and abnormal images. The experiments results show that the proposed model achieved an accuracy of 99.3%, loss validation of 0.1, low FPR and FNR values. This result demonstrates that the proposed DWAE model can facilitate the automatic detection of brain tumors.
Emotion recognition based on brain-computer interface (BCI) has attracted important research attention despite its difficulty. It plays a vital role in human cognition and helps in making the decision. Many researchers use electroencephalograms (EEG) signals to study emotion because of its easy and convenient. Deep learning has been employed for the emotion recognition system. It recognizes emotion into single or multi-models, with visual or music stimuli shown on a screen. In this article, the convolutional neural network (CNN) model is introduced to simultaneously learn the feature and recognize the emotion of positive, neutral, and negative states of pure EEG signals single model based on the SJTU emotion EEG dataset (SEED) with ResNet50 and Adam optimizer. The dataset is shuffle, divided into training and testing, and then fed to the CNN model. The negative emotion has the highest accuracy of 94.86% fellow by neutral emotion with 94.29% and positive emotion with 93.25% respectively. With average accuracy of 94.13%. The results showed excellent classification ability of the model and can improve emotion recognition.
A Brain-computer interface (BCI) using an electroencephalogram (EEG) signal has a great attraction in emotion recognition studies due to its resistance to humans’ deceptive actions. This is the most significant advantage of brain signals over speech or visual signals in the emotion recognition context. A major challenge in EEG-based emotion recognition is that a lot of effort is required for manually feature extractor, EEG recordings show varying distributions for different people and the same person at different time instances. The Poor generalization ability of the network model as well as low robustness of the recognition system. Improving algorithms and machine learning technology helps researchers to recognize emotion easily. In recent years, deep learning (DL) techniques, specifically convolutional neural networks (CNNs) have made excellent progress in many applications. This study aims to reduce the manual effort on features extraction and improve the EEG signal single model’s emotion recognition using convolutional neural network (CNN) architecture with residue block. The dataset is shuffle, divided into training and testing, and then fed to the model. DEAP dataset has class 1, class 2, class 3, and class 4 for both valence and arousal with an accuracy of 90.69%, 91.21%, 89.66%, 93.64% respectively, with a mean accuracy of 91.3%. The negative emotion has the highest accuracy of 94.86% fellow by neutral emotion with 94.29% and positive emotion with 93.25% respectively, with a mean accuracy of 94.13% on the SEED dataset. The experimental results indicated that CNN Based on residual networks can achieve an excellent result with high recognition accuracy, which is superior to most recent approaches.
Motor imagery based on brain-computer interface (BCI) has attracted important research attention despite its difficulty. It plays a vital role in human cognition and helps in making the decision. Many researchers use electroencephalogram (EEG) signals to study brain activity with left and right-hand movement. Deep learning (DL) has been employed for motor imagery (MI). In this article, a deep neural network (DNN) is proposed for classification of left and right movement of EEG signal using Common Spatial Pattern (CSP) as feature extraction with standard gradient descent (GD) with momentum and adaptive learning rate LR. (GDMLR), the performance is compared using a confusion matrix, the average classification accuracy is 87%, which is improved as compared with state-of-the-art methods that used different datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.