In this paper we combine an infeasible Interior Point Method (IPM) with the Proximal Method of Multipliers (PMM). The resulting algorithm (IP-PMM) is interpreted as a primal-dual regularized IPM, suitable for solving linearly constrained convex quadratic programming problems. We apply few iterations of the interior point method to each sub-problem of the proximal method of multipliers. Once a satisfactory solution of the PMM sub-problem is found, we update the PMM parameters, form a new IPM neighbourhood and repeat this process. Given this framework, we prove polynomial complexity of the algorithm, under standard assumptions. To our knowledge, this is the first polynomial complexity result for a primal-dual regularized IPM. The algorithm is guided by the use of a single penalty parameter; that of the logarithmic barrier. In other words, we show that IP-PMM inherits the polynomial complexity of IPMs, as well as the strict convexity of the PMM sub-problems. The updates of the penalty parameter are controlled by IPM, and hence are well-tuned, and do not depend on the problem solved. Furthermore, we study the behavior of the method when it is applied to an infeasible problem, and identify a necessary condition for infeasibility. The latter is used to construct an infeasibility detection mechanism. Subsequently, we provide a robust implementation of the presented algorithm and test it over a set of small to large scale linear and convex quadratic programming problems. The numerical results demonstrate the benefits of using regularization in IPMs as well as the reliability of the method.
In this article, we address the efficient numerical solution of linear and quadratic programming problems, often of large scale. With this aim, we devise an infeasible interior point method, blended with the proximal method of multipliers, which in turn results in a primal-dual regularized interior point method. Application of this method gives rise to a sequence of increasingly ill-conditioned linear systems which cannot always be solved by factorization methods, due to memory and CPU time restrictions. We propose a novel preconditioning strategy which is based on a suitable sparsification of the normal equations matrix in the linear case, and also constitutes the foundation of a block-diagonal preconditioner to accelerate MINRES for linear systems arising from the solution of general quadratic programming problems. Numerical results for a range of test problems demonstrate the robustness of the proposed preconditioning strategy, together with its ability to solve linear systems of very large dimension.
In this paper, we present a dynamic non-diagonal regularization for interior point methods. The non-diagonal aspect of this regularization is implicit, since all the off-diagonal elements of the regularization matrices are cancelled out by those elements present in the Newton system, which do not contribute important information in the computation of the Newton direction. Such a regularization has multiple goals. The obvious one is to improve the spectral properties of the Newton system solved at each iteration of the interior point method. On the other hand, the regularization matrices introduce sparsity to the aforementioned linear system, allowing for more efficient factorizations. We also propose a rule for tuning the regularization dynamically based on the properties of the problem, such that sufficiently large eigenvalues of the non-regularized system are perturbed insignificantly. This alleviates the need of finding specific regularization values through experimentation, which is the most common approach in literature. We provide perturbation bounds for the eigenvalues of the non-regularized system matrix and then discuss the spectral properties of the regularized matrix. Finally, we demonstrate the efficiency of the method applied to solve standard small and medium-scale linear and convex quadratic programming test problems.
We present a new framework for online Least Squares algorithms for nonlinear modeling in RKH spaces (RKHS). Instead of implicitly mapping the data to a RKHS (e.g., kernel trick), we map the data to a finite dimensional Euclidean space, using random features of the kernel's Fourier transform. The advantage is that, the inner product of the mapped data approximates the kernel function. The resulting "linear" algorithm does not require any form of sparsification, since, in contrast to all existing algorithms, the solution's size remains fixed and does not increase with the iteration steps. As a result, the obtained algorithms are computationally significantly more efficient compared to previously derived variants, while, at the same time, they converge at similar speeds and to similar error floors.
In this paper we generalize the Interior Point-Proximal Method of Multipliers (IP-PMM) presented in Pougkakiotis and Gondzio (Comput Optim Appl 78:307–351, 2021. 10.1007/s10589-020-00240-9) for the solution of linear positive Semi-Definite Programming (SDP) problems, allowing inexactness in the solution of the associated Newton systems. In particular, we combine an infeasible Interior Point Method (IPM) with the Proximal Method of Multipliers (PMM) and interpret the algorithm (IP-PMM) as a primal-dual regularized IPM, suitable for solving SDP problems. We apply some iterations of an IPM to each sub-problem of the PMM until a satisfactory solution is found. We then update the PMM parameters, form a new IPM neighbourhood, and repeat this process. Given this framework, we prove polynomial complexity of the algorithm, under mild assumptions, and without requiring exact computations for the Newton directions. We furthermore provide a necessary condition for lack of strong duality, which can be used as a basis for constructing detection mechanisms for identifying pathological cases within IP-PMM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.