Despite promise for the use of antibodies as molecular imaging agents in PET, their long in vivo half-lives result in poor contrast and radiation damage to normal tissue. This study describes an approach to overcome these limitations.
Methods
Mice bearing human epidermal growth factor receptor type 2 (HER2)–overexpressing tumors were injected with radiolabeled (124I, 125I) HER2-specific antibody (pertuzumab). Pertuzumab injection was followed 8 h later by the delivery of an engineered, antibody-based inhibitor of the receptor, FcRn. Biodistribution analyses and PET were performed at 24 and 48 h after pertuzumab injection.
Results
The delivery of the engineered, antibody-based FcRn inhibitor (or Abdeg, for antibody that enhances IgG degradation) results in improved tumor-to-blood ratios, reduced systemic exposure to radiolabel, and increased contrast during PET.
Conclusion
Abdegs have considerable potential as agents to stringently regulate antibody dynamics in vivo, resulting in increased contrast during molecular imaging with PET.
In response to cellular stress, phosphatidylserine is exposed on the outer membrane leaflet of tumor blood vessels and cancer cells, motivating the development of phosphatidylserine-specific therapies. The generation of drug-conjugated phosphatidylserine-targeting agents represents an unexplored therapeutic approach, for which antitumor effects are critically dependent on efficient internalization and lysosomal delivery of the cytotoxic drug. In the current study, we have generated phosphatidylserine-targeting agents by fusing phosphatidylserine-binding domains to a human IgG1-derived Fc fragment. The tumor localization and pharmacokinetics of several phosphatidylserine-specific Fc fusions have been analyzed in mice and demonstrate that Fc-Syt1, a fusion containing the synaptotagmin 1 C2A domain, effectively targets tumor tissue. Conjugation of Fc-Syt1 to the cytotoxic drug monomethyl auristatin E results in a protein-drug conjugate (PDC) that is internalized into target cells and, due to the Ca dependence of phosphatidylserine binding, dissociates from phosphatidylserine in early endosomes. The released PDC is efficiently delivered to lysosomes and has potent antitumor effects in mouse xenograft tumor models. Interestingly, although an engineered, tetravalent Fc-Syt1 fusion shows increased binding to target cells, this higher avidity variant demonstrates reduced persistence and therapeutic effects compared with bivalent Fc-Syt1. Collectively, these studies show that finely tuned, Ca-switched phosphatidylserine-targeting agents can be therapeutically efficacious. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.