One of the vital functions of naturally occurring cilia is fluid transport. Biological cilia use spatially asymmetric strokes to generate a net fluid flow that can be utilized for feeding, swimming, and other functions. Biomimetic synthetic cilia with similar asymmetric beating can be useful for fluid manipulations in lab-on-chip devices. In this paper, we demonstrate the microfluidic pumping by magnetically actuated synthetic cilia arranged in multi-row arrays. We use a microchannel loop to visualize flow created by the ciliary array and to examine pumping for a range of cilia and microchannel parameters. We show that magnetic cilia can achieve flow rates of up to 11 μl/min with the pressure drop of ~1 Pa. Such magnetic ciliary array can be useful in microfluidic applications requiring rapid and controlled fluid transport.
Most microorganisms use hair-like cilia with asymmetric beating to perform vital bio-physical processes. In this paper, we demonstrate a novel fabrication method for creating magnetic artificial cilia capable of such a biologically inspired asymmetric beating pattern essential for inducing microfluidic transport at low Reynolds number. The cilia are fabricated using a lithographic process in conjunction with deposition of magnetic nickel-iron permalloy to create flexible filaments that can be manipulated by varying an external magnetic field. A rotating permanent magnet is used to actuate the cilia. We examine the kinematics of a cilium and demonstrate that the cilium motion is defined by an interplay among elastic, magnetic, and viscous forces. Specifically, the forward stroke is induced by the rotation of the magnet which bends the cilium, whereas the recovery stroke is defined by the straightening of the deformed cilium, releasing accumulated elastic potential energy. This difference in dominating forces acting during the forward stroke and the recovery stroke leads to an asymmetric beating pattern of the cilium. Such magnetic cilia can find applications in microfluidic pumping, mixing, and other fluid handling processes.
Organisms use hair-like cilia that beat in a metachronal fashion to actively transport fluid and suspended particles. Metachronal motion emerges due to a phase difference between beating cycles of neighboring cilia and appears as traveling waves propagating along ciliary carpet. In this work, we demonstrate biomimetic artificial cilia capable of metachronal motion. The cilia are micromachined magnetic thin filaments attached at one end to a substrate and actuated by a uniform rotating magnetic field. We show that the difference in magnetic cilium length controls the phase of the beating motion. We use this property to induce metachronal waves within a ciliary array and explore the effect of operation parameters on the wave motion. The metachronal motion in our artificial system is shown to depend on the magnetic and elastic properties of the filaments, unlike natural cilia, where metachronal motion arises due to fluid coupling. Our approach enables an easy integration of metachronal magnetic cilia in lab-on-a-chip devices for enhanced fluid and particle manipulations.
Biological cells often interact with the environment through carpets of microscopic hair-like cilia. These elastic structures are known to beat in a synchronized wavy fashion called metachronal motion to produce fluid transport. Metachronal motion emerges due to a phase difference between beating cycles of neighboring cilia and appears as traveling waves propagating along the ciliary carpet. We demonstrate submerged in water microscale magnetic cilia that are externally actuated to beat in a metachronal fashion. Two approaches are used to induce coordinated phase differences among the beating cilia. In the first case, we fabricate cilia with an imposed gradient of geometrical properties that are subject to a rotating uniform magnetic field. In the second scenario, a ciliary array is composed of identical cilia that experience a magnetic field that varies spatiotemporally. We demonstrate that magnetic cilia can achieve symplectic, antiplectic, and leoplectic metachrony.
Cells respond to mechanical forces by deforming in accordance with viscoelastic solid behavior. Studies of microscale cell deformation observed by high speed video microscopy have elucidated a new cell behavior in which sufficiently rapid mechanical compression of cells can lead to transient cell volume loss and then recovery. This work has discovered that the resulting volume exchange between the cell interior and the surrounding fluid can be utilized for efficient, convective delivery of large macromolecules (2000 kDa) to the cell interior. However, many fundamental questions remain about this cell behavior, including the range of deformation time scales that result in cell volume loss and the physiological effects experienced by the cell. In this study, a relationship is established between cell viscoelastic properties and the inertial forces imposed on the cell that serves as a predictor of cell volume loss across human cell types. It is determined that cells maintain nuclear envelope integrity and demonstrate low protein loss after the volume exchange process. These results define a highly controlled cell volume exchange mechanism for intracellular delivery of large macromolecules that maintains cell viability and function for invaluable downstream research and clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.