We present thermopower measurements on free-standing, straight and "junctioned" gold nanowires using a micromachined thermoelectric workbench. Measurements on straight 70 nm diameter gold nanowires show a thermopower similar to that of bulk gold; however for "junctioned" gold nanowires we observed a hitherto unreported peak in the thermopower near room temperature. The observed enhancement can be explained by approximating the "junctioned" nanowires as tunnel junctions in combination with Coulombic effect of the electrons crossing the junction. The electron transfer across the barrier can be expected to be stochastic in nature. Under thermal equilibrium conditions and in the absence of temperature gradient across the tunnel junction, the time averaged random fluctuation of the electrons across the tunnel junction results in a net zero voltage. However, in the presence of a temperature gradient across the junction, the time averaged fluctuation of the electrons across the junction is now offset by the tunnel junction thermoelectric effect and is measured by the lock-in amplifier. A hundredfold enhancement in the ZT of "junctioned" nanowires has been observed for the gold nanowires measured over several samples.
SUMMARYThis paper reports the design and development of a set of micromachined Coriolis-force-based mass flowmeters for direct mass flow and fluid density measurements. Based on our current prototypes, the flowmeters developed in ISSYS have high resonance frequencies (above 16 KHz) with a high Q-factor of 1000. The flowmeters are able to offer an outstanding mass flow resolution of 2J..lg/S (0.06 seem for volumetric airflow), and an excellent fluid density resolution of 2.0mg/cc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.