SiGe (C)/Si(C) multiquantum wells have been studied as a thermistor material for future bolometers. A thermistor material for uncooled Si-based thermal detectors with thermal coefficient of resistance of 4.5%/K for 100×100 μm2 pixel sizes and low noise constant (K1/f) value of 4.4×10−15 is presented. The outstanding performance of the devices is due to Ni-silicide contacts, smooth interfaces, and high quality multiquantum wells containing high Ge content.
This paper reports on the realization and characterization of the very first quantum-well (QW) mono-crystalline Si/SiGe 18x18 pixel infrared bolometer arrays that are manufactured using IC compatible heterogeneous 3D integration on fan-out wafers. This integration process enables bolometer materials on top of CMOS-based integrated circuits that can not be integrated with conventional monolithic deposition techniques. The manufactured bolometer arrays have a negative temperature coefficient of resistance (TCR) of 2.8%/K. Measurements of the 1/f noise showed a higher value than expected for the bolometers. This result can be compared to lower values of noise achieved for samples of the thermistor material and is believed to result from imperfect metal contacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.