Restless legs syndrome (RLS) involves abnormal limb sensations that diminish with motor activity, worsen at rest, have a circadian peak in expression in the evening and at night, and can severely disrupt sleep. Primary treatment is directed at CNS dopaminergic systems, particularly activation of D(2)-like (D(2), D(3), and D(4)) receptors. Although RLS affects 2% to 15% of the general population, the neural circuitry contributing to RLS remains speculative, and there is currently no accepted animal model to enable detailed mechanistic analyses. Traditional views suggest that RLS arises from supraspinal sources which favor facilitation of the flexor reflex and emergence of the RLS phenotype. The authors forward the hypothesis that RLS reflects a dysfunction of the little-studied dorsoposterior hypothalamic dopaminergic A11 cell group. They assert that, as the sole source of spinal dopamine, reduced drive in this system can lead to spinal network changes wholly consistent with RLS. The authors summarize their recent investigations on spinal cord dopamine dysfunction that rely on lesions centered on A11, and on studies in D(3) receptor knockout (D(3)KO) mice. Excessive locomotor behavior is evident in both sets of animals, and D(3)KO mice exhibit facilitation rather than the expected depression of spinal reflexes in the presence of dopamine as well as a reversal in their circadian expression of the rate-limiting enzyme for dopamine synthesis, tyrosine hydroxylase. Taken together, these findings are consistent with an involvement of spinal dopamine dysfunction in the etiology of RLS, and they argue that the D(3)KO mouse might serve as a relevant animal model to study the underlying mechanisms of RLS.
Dopamine is a catecholaminergic neuromodulatory transmitter that acts through five molecularlydistinct G protein-coupled receptor subtypes (D 1 -D 5 ). In the mammalian spinal cord, dopaminergic axon collaterals arise predominantly from the A11 region of the dorsoposterior hypothalamus and project diffusely throughout the spinal neuraxis. Dopaminergic modulatory actions are implicated in sensory, motor and autonomic functions in the spinal cord but the expression properties of the different dopamine receptors in the spinal cord remain incomplete. Here we determined the presence and the regional distribution of all dopamine receptor subtypes in mouse spinal cord cells by means of quantitative real time PCR and digoxigenin-label in situ hybridization. Real-time PCR demonstrated that all dopamine receptors are expressed in the spinal cord with strongly dominant D 2 receptor expression, including in motoneurons and in the sensory encoding superficial dorsal horn (SDH). Laser Capture Microdissection (LCM) corroborated the predominance of D 2 receptor expression in SDH and motoneurons. In situ hybridization of lumbar cord revealed that expression for all dopamine receptors was largely in the gray matter, including motoneurons, and distributed diffusely in labeled cell subpopulations in most or all laminae. The highest incidence of cellular labeling was observed for D 2 and D 5 receptors, while the incidence of D 1 and D 3 receptor expression was least. We conclude that the expression and extensive postsynaptic distribution of all known dopamine receptors in spinal cord corresponds well with the broad descending dopaminergic projection territory supporting an widespread dopaminergic control over spinal neuronal systems. The dominant expression of D 2 receptors suggests a leading role for these receptors in dopaminergic actions on postsynaptic spinal neurons. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. (Joyce, 1983, Jackson and Westlind-Danielsson, 1994, Jaber et al., 1996, Missale et al., 1998. NIH Public AccessThe distribution of individual dopamine receptor subtypes has been analyzed in much detail, using immunohistochemistry, receptor ligand binding, or in situ hybridization (ISH) techniques. Most of this research has focused on the brain (Meador-Woodruff and Mansour, 1991, Weiner et al., 1991, Bergson et al., 1995, Yung et al., 1995, Gurevich and Joyce, 1999, Hurd et al., 2001, Kumar and Patel, 2007.There are extensive dopaminergic projections in the spinal cord (Skagerberg et al., 1982, Skagerberg and Bjorklund, 1985, Skagerberg et al., 1988, and a number of au...
Restless legs syndrome (RLS) is a common disorder. The population prevalence is 1.5% to 2.7% in a subgroup of patients having more severe RLS with symptoms occurring 2 or more times a week and causing at least moderate distress. It is important for primary care physicians to be familiar with the disorder and its management. Much has changed in the management of RLS since our previous revised algorithm was published in 2013. This updated algorithm was written by members of the Scientific and Medical Advisory Board of the RLS Foundation based on scientific evidence and expert opinion. A literature search was performed using PubMed identifying all articles on RLS from 2012 to 2020. The management of RLS is considered under the following headings: General Considerations; Intermittent RLS; Chronic Persistent RLS; Refractory RLS; Special Circumstances; and Alternative, Investigative, and Potential Future Therapies. Nonpharmacologic approaches, including mental alerting activities, avoidance of substances or medications that may exacerbate RLS, and oral and intravenous iron supplementation, are outlined. The choice of an alpha 2 -delta ligand as first-line therapy for chronic persistent RLS with dopamine agonists as a second-line option is explained. We discuss the available drugs, the factors determining which to use, and their adverse effects. We define refractory RLS and describe management approaches, including combination therapy and the use of high-potency opioids. Treatment of RLS in pregnancy and childhood is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.