A fundamental prerequisite for the implementation of organic semiconductors (OSCs) in spintronics devices is the still missing basic knowledge about spin injection and transport in OSCs. Here, we consider a model system consisting of a high-quality interface between the ferromagnet cobalt and the OSC copper phthalocyanine (CuPc). We focus on interfacial effects on spin injection and on the spin transport properties of CuPc. Using spin-resolved two-photon photoemission, we have measured directly and in situ the efficiency of spin injection at the cobalt-CuPc interface. We report a spin injection efficiency of 85-90% for injection into unoccupied molecular orbitals of CuPc. Moreover, we estimate an electron inelastic mean free path in CuPc in the range of 1 nm and a 10-30 times higher quasi-elastic spin-flip length. We demonstrate that quasi-elastic spin-flip processes with energy loss < or = 200 meV are the dominant microscopic mechanism limiting the spin diffusion length in CuPc.
Electrons in organic semiconductors (OSC) possess remarkably long spin relaxation times. Hybrid spintronic devices that combine OSC with ferromagnetic (FM) substrates are therefore expected to provide a route to devices with improved and new functionalities. A crucial role is played by the FM‐OSC interface which governs the spin injection into the OSC. Using spin‐resolved photoelectron spectroscopy and ab initio calculations we study here such possible injection channels in metal phthalocyanines (MPc). We report the first direct observation of the successful engineering of different spin‐selective hybrid interface states at the Fermi level of a FM‐OSC hybrid junction only by changing the central metal atom of a MPc. Our results demonstrate that tailoring the chemical interaction at the FM‐OSC interface is a promising way to modify the spin injection channels and thus the spin injection capability.
The pi-conjugated organic molecules 3,4,9,10-perylene-tetracarboxylic dianhydride, 1,4,5,8-naphthalene-tetracarboxylic dianhydride, and 1,8-naphthalene-dicarboxylic anhydride were investigated via gas phase and bulk ultraviolet photoemission spectroscopy and compared to density functional theory calculations. Values for final state effects such as intermolecular polarization were determined and the differing features in the spectra interpreted as a consequence of interactions in the thin films. Additionally, the highest occupied molecular orbitals of the molecules clearly show distinctive peaks originating from vibrational excitations, leading to results for Franck-Condon factors.
n doping of the molecular organic semiconductor perylene-3,4,9,10-tetracarboxylic–dianhydride (PTCDA) is often achieved by use of alkali metals as dopants. This doping process is commonly performed in two steps. In the first the dopant is evaporated onto the surface of the PTCDA film. As it has been believed that the dopant shows an inhomogeneous diffusion profile through the layer with most of the dopant accumulated in the first few layers, a subsequent annealing step has been performed in order to reach a homogeneous distribution of the dopant in the whole layer. In this paper experimental results concerning chemical composition ((angle resolved) X-ray photoemission spectroscopy, secondary-ion-mass spectrometry, Fourier transform infrared spectroscopy), electronic structure (ultraviolet photoemission spectroscopy, inverse photoemission spectroscopy), as well as electrical properties (conductivity, Seebeck coefficient) are shown before and after doping and before and after annealing. These results suggest that the deposited dopant is redistributed and partially removed during the annealing step. A model for the dopant distribution is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.