A series of ruthenium complexes of the general type Ru(CO)2(P(n-Bu)3)2(O2CR)2 (4a, R = Me; 4b, R = Et; 4c, R = i-Pr; 4d, R = t-Bu; 4e, R = CH2OCH3; 4f, R = CF3; 4g, R = CF2CF3) was synthesized by a single-step reaction of Ru3(CO)12 with P(n-Bu)3 and the respective carboxylic acid. The molecular structures of 4b, 4c and 4e–g in the solid state are discussed. All ruthenium complexes are stable against air and moisture and possess low melting points. The physical properties including the vapor pressure can be adjusted by modification of the carboxylate ligands. The chemical vapor deposition of ruthenium precursors 4a–f was carried out in a vertical cold-wall CVD reactor at substrate temperatures between 350 and 400 °C in a nitrogen atmosphere. These experiments show that all precursors are well suited for the deposition of phosphorus-doped ruthenium layers without addition of any reactive gas or an additional phosphorus source. In the films, phosphorus contents between 11 and 16 mol% were determined by XPS analysis. The obtained layers possess thicknesses between 25 and 65 nm and are highly conformal and dense as proven by SEM and AFM studies
Ethylene glycol-functionalised copper(II) carboxylates Cu[O2CCR2(OC2H4)nOCH3]2 (n = 0-3; R = H, Me) (2a-e) have been prepared by the reaction of [Cu2(OAc)4·2H2O] with CH3O(C2H4O)nCR2CO2H (1a-e). Upon reduction of 2a-e with triphenylphosphine, the corresponding tris(triphenylphosphine)copper(I) complexes 3a-e were obtained, which could be converted to the bis(triphenylphosphine)copper(I) complexes 4a-e by removal of one phosphine ligand. Based on IR spectroscopy and single crystal X-ray structure analysis the binding motif of the carboxylato group on the copper ion is discussed. DSC, TG and TG-MS experiments were performed to analyse the thermal decomposition mechanism of 2-4. Complex 4c was used as a precursor for the generation of copper nanoparticles by thermal decomposition in hexadecylamine without the need of any further reactants. Depending on the precursor concentration, spherical copper nanoparticles with a mean diameter ranging from 10 to 85 nm as well as nanorods with a length of up to 1.3 μm (aspect ratios ranging between 2 and 32) were obtained. Electron diffraction analysis of the rods suggested that they consist of five domains which are arranged around a fivefold rotational axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.